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Abstract 

This article is concerned with Endpoint-Inflated Double Truncated Poisson 
distribution which is developed for modeling count data with excessive zeros (left-
endpoint) and excessive right-endpoint(݉) compared with other observations of the 
data. This method for modeling such data is based on an assumption that the random 
variable is generated from a mixture distribution of three components. The 
probability when the value for the response variable is zero, the probability when 
the value for the response variable is ݉, and the other counts are defined by Double 
Truncated Poisson distribution. Some of its main properties are discussed. The 
maximum likelihood and moment methods of estimations are utilized to derive 
point estimators and confidence intervals for the parameters. Regression model 
based on the distribution is proposed and the corresponding computational 
procedures are introduced. A simulation study is conducted to evaluate the 
performance of the proposed methods. A real data set is analyzed to demonstrate 
how the methods can be applied in practice.   

Keywords: Count data; Truncated Poisson distribution; Zero-Inflated Poisson 
distribution; Endpoint-inflated Poisson distribution; Zero- one Inflated 
Poisson distribution; Maximum likelihood estimators; Moment 
estimators. 

1. Introduction 

Many studies in different areas involve nonnegative integer values. The Poisson 
models are the most used tools for modeling count data. In practice, however, count 
data are often over dispersed, the variance can be greater than the average value. 
One frequent manifestation of over dispersion is that the incidence of zero counts is 
greater than expected for the Poisson distribution. Motivated by this fact, some 
studies have focused on inflated distributions for modeling count data with large 
frequencies of zeros that cannot be explained by models based on standard 
distributional assumptions. Such data are common in many fields including 
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medicine, public health studies, epidemiology, ecology, sociology, psychology, 
econometrics, agriculture, engineering, manufacturing, and road safety. Inflated 
distributions can be thought as finite mixture distributions which involve a finite 
number of components to deal with the nature of the data. Mixture distributions 
arise when each distribution separately cannot describe the data. Some of these 
studies are interested in zero-inflated and others are interested in zero-and-one 
inflated families of models. zero-inflated distribution is based on an assumption that 
the random variable is generated by a mixture of two distributions, one is the 
discrete distribution and a degenerate distribution at zero [see Mullahy (1986) 
developed zero inflated family of models, Lampert (1992)  extended zero-inflated 
Poisson (ZIP) distribution]. Many studies build regression models based on Zero-
inflated distributions to clarify the relation between the covariates and the response 
variable. [see Lampert (1992) used a parametric ZIP regression model to study the 
effects of covariates with parameters of interest via appropriate link functions, 
Ridout et al. (2001) derived a score test for testing a ZIP regression model against 
zero-inflated negative binomial (ZINB) alternatives which the non-zero part of the 
count data is over dispersed and another distribution such as ZINB may be more 
appropriate than ZIP, Diop and Dupuy (2014) developed zero inflated Bernoulli 
(ZIBER) regression model to fit binary data that contain too many zeros. Fitriani et 
al. (2019) presented Simulation on the ZINB to model over dispersed Poisson 
distributed data, Diallo et al. (2019) presented estimation in zero-inflated binomial 
(ZIB) regression with missing covariates]. 

Zero-and-one inflated distributions have been developed to fit count data with 
excess zeros and ones simultaneously. There are many methods to build  zero-and-
one inflated distributions and one of these methods is based on an assumption that 
the random variable is generated by a mixture of three distributions, a degenerate 
distribution at zero, a degenerate distribution at one and a discrete distribution 
representing the other values [see Edwin (2014) considered zero-one inflated 
geometric (ZOIG) distribution in analysis of a real life.  Alshkaki (2016) introduced 
zero-and-one inflated power series distributions, Poisson, binomial, negative 
binomial, geometric and logarithmic series distributions. Alshkaki (2016) discussed 
properties and parameters estimators of zero-and-one inflated Poisson (ZOIP) 
distribution. Alshkaki (2016) provided mathematical properties of zero-one inflated 
logarithmic series (ZOILS) distribution. Alshkaki (2016) provided mathematical 
properties of zero-one inflated negative binomial (ZOINB) and zero-one inflated 



 
 

 111 
 

binomial (ZOIB) distributions.  Zhang et al. (2016) studied the likelihood based 
ZOIP model without covariates. Tang et al. (2017) studied the statistical inference 
for (ZOIP) distribution. Liu et al. (2018) derived the objective Bayesian estimation 
of ZOIP model, Alshkaki (2019) derived a combined estimation method to estimate 
the parameters of the (ZOINB) distribution, Tlhaloganyang et al. (2019) derived 
Structural properties of zero-one-inflated negative-binomial crack (ZOINBCR) 
distribution]. 

To investigate the relation between the covariates and the response variable, many 
studies built regression models based on zero-and-one inflated distributions [see 
Deng et al. (2015) introduced generalized endpoint-inflated binomial model, Liu et 
al. (2018) introduced zero-and-one inflated Poisson regression model]. 

In this article, endpoint-inflated model is developed to fit count data to handle 
variability from both excessive zeros and excessive right-endpoint ݉ compared 
with other observations in the data assuming all zeros and ݉ are from one structural 
source. The proposed model is an extension of zero- inflated models through 
addition of the right-endpoint inflation parameter. It provides alternative 
distributions for modeling count data that is found to be characterized by excessive 
zero and excessive right-endpoint counts. The model is based on an assumption that 
the random variable is generated from a mixture distribution of three components. 
The probability when the value for the response variable is zero, the probability 
when the value for the response variable is ݉, and the other counts are defined by 
Double Truncated Poisson distribution, so the model is said to be inflated since it 
allows for positive probability mass at some points, which assign higher 
probabilities to zero and	݉. 

This article unfolds as follows; Section 2 presents the double truncated Poisson 
distribution and its mean and variance. The endpoint-inflated double truncated 
Poisson distribution is suggested in Section 3 and its main properties such as the 
mean and variance, moment generating function and the probability generating 
function are presented.  Section 4 discusses the maximum likelihood estimators of 
the distribution and the elements of the Hessian matrix; the Fisher information 
matrix and the variance-covariance matrix of the maximum likelihood estimators 
are derived. The moment method is used to estimate the parameters in Section 5. 
Regression model based on endpoint-inflated double truncated Poisson distribution 
is suggested in Section 6. Section 7 discusses the maximum likelihood estimators 
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of the model and the variance-covariance matrix of the maximum likelihood 
estimators is derived. In Section 8 a simulation study is conducted to evaluate the 
performance of the proposed methods and a real data set is analyzed to demonstrate 
how the methods can be applied in practice. Finally, some concluding remarks were 
given in section 9.   

2. Double Truncated Poisson Distribution  

This section is devoted to the description of the double truncated 
Poisson	distribution. count data can be truncated where some values in a specific 
range cannot be observed. Count data in which zero and ݉ counts cannot be 
observed are called double truncated count data. Double truncated Poisson data are 
a combination of the left truncated and right truncated Poisson data. Right 
truncation happens from loss of observations greater than some specified value. Left 
truncation happens from loss of observations smaller than some specified value. 

Let ܻ be a discrete random variable has the pmf ݂(ݕ) given by 

(ݕ)݂   = ௘షഊఒ೤

௬!
ݕ		 ,  = 0,1,2, … ߣ						,			 > 0																																																																										(1) 

From Cohen (1954) the pmf for a discrete random variable has a double truncated 
Poisson distribution denoted by	DTP(ߣ) is given by 

ܲ(ܻ = ݇|0 < ݇ < ݉)

=
1

ܲ(0 < ݇ < ݉) ∙  (2)																																																																																.(ݕ)݂

where ଵ݂ is referred to as parent-process. the denominator gives a normalization that 
accounts for the truncation of ଵ݂. 

by substituting (1) in (2) then 

ܲ(ܻ = ݇|0 < ݇ < ݉) =
௬ߣ

!ݕ ൬∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!൰
		,			0 < ݇ < ݉																																				(3) 

The first two moments of the distribution are given by 

(ܻ)ܧ =
∑ ௞ߣ݇

݇! 		
௠
௞ୀ଴

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

,																																																																																																					(4) 

(ଶܻ)ܧ =
∑ ݇ଶߣ௞

݇! 		௠
௞ୀ଴

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

,																																																																																																	(5) 
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The variance is given by 

ܸ(ܻ) =
∑ ݇ଶߣ௞

݇! 		௠
௞ୀ଴

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1− ௠ߣ

݉!

			− ൮
∑ ௞ߣ݇

݇! 		
௠
௞ୀ଴

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

൲

ଶ

.																																																				(6) 

While the regular Poisson distribution typically encounters difficulty due to the 
assumed equality of mean and variance, the mean and variance of the doubly 
truncated Poisson distribution are characteristic of under dispersion where the 
variance is less than the mean. 

3. Endpoint-Inflated Double Truncated Poisson Distribution 

This section is devoted to the description of the endpoint-inflated double truncated 
Poisson distribution.  The proposed model is said to be inflated since it allows for 
positive probability mass at some points (zero and	݉). The distribution has been 
developed for count data with excessive zeros assuming all zeros are from one 
structural source and with excessive right endpoint m assuming all m are from one 
structural source. Thus, the random variable is generated by a mixture of the 
probability when the value for response variable are zeros and right-endpoint	݉, 
and the other counts are defined by DTP(ߣ).   

Such data are common in many fields including psychological, social, and public 
health related research. For example, many patients go to the cosmetology many 
times when others never visit; the number of working days in a week that 
individuals work may be zero due to unemployment as may have any value greater 
than zero. patients may be infected by the virus and have not received any doses of  
prescription medication for lake of detection while others have received multiple 
doses for early detection and the number of days people with psychiatric problems 
spent in hospitals exceeds months while others are not fully hospitalized. 

Let ܻ be a discrete random variable has an endpoint-inflated double truncated 
Poisson distribution, denoted by	EIDTP(߮଴,߮ଵ,ߣ).Suppose that ℊ௢(0) is the 
probability when the value for response variable is zero, ℊଵ(݉)  is the probability 
when the value for response variable is ݉ and that ℊଶ(݇),݇ = 1,2, … ,݉ − 1  is a 
probability function when the response variable is another positive integer. 
Therefore, the probability function of the EIDTP(߮଴,߮ଵ,ߣ) is given by: 

ܲ(ܻ = ݇;߮଴ ,߮ଵ (ߣ, = 	 ቐ
ℊ௢(0)																																																														݂ݎ݋		݇ = 0,												
ℊଵ(݉)																																																													݂ݎ݋		݇ = ݉,													
൫1− ℊ௢(0)−ℊଵ(݉)൯ℊଶ(݇),																			݂ݎ݋			0 < ݇ < ݉	.					
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All parts of the distribution are based on probability functions for nonnegative 
integers [see Mullahy (1986)].In terms of the general model above, let ℊ௢(0) =
߮௢,ℊଵ(݉) = ߮ଵ		and ℊଶ(݇) is the pmf of 	DTP(ߣ) in (3). 

 The EIDTP(߮଴,߮ଵ,  can be expressed as a mixture of three components as (ߣ
follows: 

଴,߮ଵ߮;ݕ)݂ (ߣ, = 	

⎩
⎪
⎨

⎪
⎧
߮௢ ݕ		݂݅																																																																																					 = 0,																																																		
߮ଵ ݕ		݂݅																																																																																					 = ݉,																																											(7)

߮ଶ
௬ߣ

!ݕ ൬∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1− ௠ߣ

݉!൰
,																																						݂݅		0 < ݕ < ݉.																																										

 

߮௢ ∈ [0,1], ߮ଵ ∈ [0,1] denote the probability values when the values for response 
variable are zero and right-endpoint	݉, respectively and ߮ ଶ = 1 − ߮଴ − ߮ଵ ∈ [0,1] 
,assuming that all zeros and extra right-endpoint	݉ are from one  structural source 
rather than two sources.  

Figure 1 shows some different	EIDTP(߮଴,߮ଵ,ߣ)  probability mass functions along 
with the corresponding values of (߮଴,߮ଵ,ߣ). It is noteworthy that the probability 
functions can display different shapes depending on the values of the three 
parameters. In particular, when  ߮଴ = ߮ଵ = 0, the EIDTP(߮଴,߮ଵ,ߣ) in (7) becomes 
the  	DTP(ߣ) in (3).  

  

Figure 1 Endpoint-inflated Double Truncated Poisson Probability Mass Functions for different 
combinations of (࣐૙,࣐૚,ࣅ) and ࢓ 

The cumulative distribution function (cdf) of the EIDTP(߮଴,߮ଵ,  :is given as (ߣ
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,଴,߮ଵ߮;ݕ)ܨ (ߣ = ܲ(ܻ ≤ (ݕ = ෍݂(ݕ;߮଴,߮ଵ, 		(ߣ
௒ஸ௬

 

= 	 [߮଴]0)ܫ ≤ ݕ < 1) + ൦߮଴ + ߮ଶ෍
௜ߣ

݅! ൬∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!൰

௬

௜ୀ଴

൪ 1)ܫ ≤ ݕ < ݉) + ݕ)ܫ ≥ ݉).					(8) 

Some Properties of the Endpoint-Inflated Double Truncated Poisson 
Distribution 
 The rth moment about the origin of the random variable ܻ can be obtained as 

follows: 

(௥ܻ)ܧ = ෍ݕ௥݂(ݕ;߮଴,߮ଵ (ߣ,
௠

௬ୀ଴

= ߮ଵ݉௥ + ߮ଶ ෍ ݇௥
௞ߣ

݇! ൬∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1− ௠ߣ

݉!൰

௠ିଵ

௞ୀଵ

ݎ					, = 1,2, … 																						(9) 

 The mean and variance respectively, are given by: 

(ܻ)ܧ = ߮ଵ݉ + ߮ଶ 	
∑ ௞ߣ݇

݇! 		
௠ିଵ
௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

	,																																																																															(10) 

ܸ(ܻ) = ൦߮ଵ݉ଶ + ߮ଶ
∑ ݇ଶߣ௞

݇! 		௠ିଵ
௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

൪ − ൦߮ଵ݉ + ߮ଶ 	
∑ ௞ߣ݇

݇! 		
௠ିଵ
௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1− ௠ߣ

݉!

൪

ଶ

	.																							(11) 

 The moment generating function and the probability generating function, 
respectively, are given by 

(ݐ)௬ܯ = ߮௢ + ߮ଵ݁௠௧ + ߮ଶ൮
∑ (݁௧ߣ)௞

݇!
௠ିଵ
௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

൲ ,																																																												(12) 

 

(ݐ)௬ܩ 		= ߮௢ + ߮ଵݐ௠ + ߮ଶ൮
∑ ௞(ߣݐ)

݇!
௠ିଵ
௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

൲ .																																																												(13) 

By substituting ߮௢ = 0, ߮ ଵ = 0, the main properties of the	DTP(ߣ) can be obtained.    

4. The Maximum Likelihood Estimators  

The maximum likelihood estimation (MLE) method is used to estimate the 
parameters of the 	EIDTP(߮଴,߮ଵ,  .(ߣ
Let ݕଵ, …  ௡ be a random sample of size ݊ drown from the pmf in (7). Theݕ,
likelihood function of the observed sample is given by: 

ܮ ቀݕ;ߠቁ = ෑ݂(ݕ௜;߮଴ ,߮ଵ , 	(14)																																																																																																																																,(ߣ
௡

௜ୀଵ
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where ߠ = (߮଴,߮ଵ   .(ߣ,

The likelihood function of 	EIDTP(߮଴,߮ଵ,  .is derived by substituting (7), in (10) (ߣ

ܮ ቀߠ; ቁݕ = [߮௢]ூ೚[߮ଵ]ூభ
[߮ଶ]ூమ

൬∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!൰
ூమ 	 ෑ ൬

	௬೔ߣ
!	௜ݕ

൰ .																																									(15)	
௡ିூభ

௜ୀ	ூ೚ାଵ

 

where  
௢ܫ	 = (ݕ)௢ܫ	 =⋕ {݅: ௜ݕ	 = 0}	,  

ଵܫ	 = (ݕ)ଵܫ	 =⋕ {݅: ௜ݕ	 = ݉}, 

and  
ଶܫ = ݊ − ௢ܫ −  .ଵܫ

Here	⋕ ঘ			is used to denote the number of elements of the set ঘ. The natural 
logarithm of (15) can be obtained as follows: 
ℓ൫ߠ൯ = ݈݊ ܮ ቀݕ;ߠቁ = ௢ܫ ݈݊(߮௢) +  ଵ݈݊(߮ଵ)ܫ

ଶ݈݊(߮ଶ)ܫ+ + ෍ 	௜ݕ

௡ିூభ

௜ୀூ೚ାଵ

(ߣ)݈݊ − ෍ !௜ݕ݈݊ − ଶܫ ݈݊ ൭෍
௞ߣ

݇!

௠

௞ୀ଴

− 1−
௠ߣ

݉!
൱

௡ିூభ

௜ୀூ೚ାଵ

.																						(16) 

The elements of the score vector for ߮଴,߮ଵ	and	ߣ	 can be obtained by taking the 
first partial derivatives of the log likelihood function (16) with respect to the 
unknown parameters  ߠ = (߮଴,߮ଵ,ߣ), as follows: 
߲ℓ൫ߠ൯
߲߮଴

=
௢ܫ
߮௢

−
ଶܫ
߮ଶ

,																																																																																																															(17) 

߲ℓ൫ߠ൯
߲߮ଵ

=
ଵܫ
߮ଵ

−
ଶܫ
߮ଶ

,																																																																																																																	(18) 

and 

߲ℓ൫ߠ൯
ߣ߲ =

∑ 	௜ݕ
௡ିூమ
௜ୀூ೚ାଵ

ߣ −
∑ ௞ିଵߣ݇

݇! ௠ିଵߣ݉−

݉!
௠
௞ୀ଴

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

 (19)																																																										ଶ.ܫ

From (17), (18) and (19), the score vector for ߮଴,߮ଵ	and	ߣ	 can be written as 
follows: 

ܷ൫ߠ൯ = ቆ
߲ℓ൫ߠ൯
߲߮଴

,
߲ℓ൫ߠ൯
߲߮ଵ

	 ,
߲ℓ൫ߠ൯
ߣ߲ 	ቇ

்

.	 

The ML estimators of ߮଴,߮ଵ	ܽ݊݀	ߣ  can be obtained as the solution of the nonlinear 
system. 

ቆ
߲ℓ൫ߠ൯
߲߮଴

,
߲ℓ൫ߠ൯
߲߮ଵ

	 ,
߲ℓ൫ߠ൯
ߣ߲ 	ቇ

்

= 0.		 

߮௢ and	߮ଵcan be estimated respectively as follows: 
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ො߮௢ =
௢ܫ
݊ ,																																																																																																																																							(20) 

and 

ො߮ଵ =
ଵܫ
݊ .																																																																																																																																					(21) 

The ML estimator of 	ߣ  cannot be obtained in closed form, hence estimation must 
be accomplished numerically using methods such as Newton-Raphson. 
 

The variance-covariance matrix 
The variance-covariance matrix of the ML estimators of the	EIDTP(߮଴,߮ଵ,  is ,(ߣ
the inverse of Fisher information matrix, the elements of the Fisher information 
matrix can be obtained by taking the negative expectation of the Hessian matrix. 
The elements of the Hessian matrix of the ML estimators of the	EIDTP(߮଴,߮ଵ,  ,(ߣ
are obtained by taking the second derivatives of the natural logarithm of the 
likelihood function, ℓ൫ߴ൯  in (16) with respect to the unknown parameters, ߠ =
(߮଴,߮ଵ,  :as follows ,(ߣ

൯൧௜,௝ߠ൫ܬൣ = ቈ
߲ଶ

௝ߠ௜߲ߠ߲
ℓ൫ߠ൯቉ቤ

ఏ෡೔,ఏ෡ೕ,
, ݅, ݆ = 1,2,3. 

the Hessian matrix can be written as follows: 

൯ߠ൫ܬ = 			 ቌ			
ఝ೚ఝ೚ܬ ఝ೚ఝభܬ 0
ఝభఝ೚ܬ ఝభఝభܬ 0

0 0 ఒఒܬ
ቍ .																																																																																							(22) 

where 

ఝ೚ఝ೚ܬ =
߲ଶℓ൫ߠ൯
߲߮଴ଶ

	=
௢ܫ−
߮௢ଶ

−
ଶܫ
߮ଶଶ

, 

 

ఝభఝభܬ =
߲ଶℓ൫ߠ൯
߲߮ଵଶ

=
ଵܫ−
߮ଵଶ

−
ଶܫ
߮ଶଶ

,	 

ఒఒܬ =
߲ଶℓ൫ߠ൯
ଶ	ߣ߲ = −

∑ 	௜ݕ
௡ିூభ
௜ୀூ೚ାଵ

ଶߣ −
൬∑ ݇(݇ − ௞ିଶߣ(1

݇!
௠
௞ୀ଴ −݉(݉ − ௠ିଶߣ(1

݉! ൰

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

ଶܫ

+
൬∑ ௞ିଵߣ݇

݇!
௠
௞ୀ଴ ௠ିଵߣ݉−

݉! ൰
ଶ

൬∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!൰
ଶ  ,ଶܫ
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ఝ೚ఝభܬ = ఝభఝబܬ =
߲ଶℓ൫ߠ൯
߲߮଴߲߮ଵ

=
߲ଶℓ൫ߠ൯

߲߮ଵ߲߮ ௢

= −
ଶܫ
߮ଶଶ

, 

 

ఝ೚ఒܬ = ఒఝబܬ =
߲ଶℓ൫ߠ൯
߲߮଴߲ߣ

=
߲ଶℓ൫ߠ൯
଴߲߮ߣ߲

= 0, 

 
and 

ఝభఒܬ = ఒఝభܬ =
߲ଶℓ൫ߠ൯
߲߮ଵ߲ߣ

=
߲ଶℓ൫ߠ൯
ଵ߲߮ߣ߲

= 0.		 

The elements of the Fisher information matrix of the ML estimators of 
the	EIDTP(߮଴,߮ଵ,ߣ),are obtained by taking the negative expectation of the Hessian 
matrix (22) as follows: 

ൣΚ൫ߠ൯൧௜,௝ = ܧ− ቈ
߲ଶ

௝ߠ௜߲ߠ߲
ℓ൫ߠ൯቉ቤ

ణ෡೔,ణ෡ೕ ,
, ݅, ݆ = 1,2,3. 

Note that	ॱ(ܫ௢) = ߮௢ ,ॱ(ܫଵ) = ߮ଵand ॱ(ܫଶ) = ߮ଶ
ఒ೤

௬!൬∑ ഊೖ
ೖ!

೘
ೖసబ ିଵିഊ

೘
೘! ൰

,[see Deng et.al.	(2015)]. 

The Fisher information matrix can be written as follows: 

Κ൫ߠ൯ = 			 ቌ
Κఝ೚ఝ೚ Κఝ೚ఝభ 0
Κఝభఝ೚ Κఝభఝభ 0

0 0 Κఒఒ
	ቍ .																																																																																						(23) 

where 

Κఝ೚ఝ೚ = −ॱቆ
߲ଶℓ൫ߠ൯
߲߮௢ଶ

ቇ =
1
߮௢

+
1
߮ଶ
	, 

 

Κఝభఝభ = −ॱቆ
߲ଶℓ൫ߠ൯
߲߮ଵଶ

ቇ =
1
߮ଵ

+
1
߮ଶ
	,		 

Κఒఒ = −ॱቆ
߲ଶℓ൫ߠ൯
ଶ	ߣ߲

ቇ 

 

Κఒఒ =
∑ 	௜ݕ
௡ିூభ
௜ୀூ೚ାଵ

ଶߣ +߮ଶ

⎣
⎢
⎢
⎢
⎡൬∑ ݇(݇ − ௞ିଶߣ(1

݇!
௠
௞ୀ଴ −݉(݉− ௠ିଶߣ(1

݉! ൰

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1− ௠ߣ

݉!

−
൬∑ ௞ିଵߣ݇

݇!
௠
௞ୀ଴ ௠ିଵߣ݉−

݉! ൰
ଶ

൬∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1− ௠ߣ

݉!൰
ଶ

⎦
⎥
⎥
⎥
⎤
, 

 

Κఝ೚ఝభ = Κఝభఝబ = −ॱቆ
߲ଶℓ൫ߠ൯
߲߮଴߲߮ଵ

ቇ = −ॱቆ
߲ଶℓ൫ߠ൯
߲߮ଵ߲߮௢

ቇ =
1
߮ଶ
	,		 

 

Κఝ೚ఒ = Κఒఝబ = −ॱቆ
߲ଶℓ൫ߠ൯
߲߮଴߲ߣ

ቇ = −ॱቆ
߲ଶℓ൫ߠ൯
଴߲߮ߣ߲

ቇ = 0, 
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and  

Κఝభఒ = Κఒఝభ = −ॱቆ
߲ଶℓ൫ߠ൯
߲߮ଵ߲ߣ

ቇ = −ॱቆ
߲ଶℓ൫ߠ൯
ଵ߲߮ߣ߲

ቇ = 0. 

The variance-covariance matrix of the ML estimators of the	EIDTP(߮଴,߮ଵ,  is  ,(ߣ
the inverse of Fisher information matrix (23), can be obtained as follows: 

Κ൫ߠ൯
ିଵ

=
1

หΚ൫ߠ൯ห
݆ܽ݀	Κ൫ߠ൯	,																																																																																																				(24) 

where 

หΚ൫ߠ൯ห is the determinant of Κ൫ߠ൯, can be obtained as follows:  

หΚ൫ߠ൯ห = ቮ
ఝ೚ఝ೚߈ ఝ೚ఝభ߈ 0
ఝభఝబ߈ ఝభఝభ߈ 0

0 0 ఒఒ߈
ቮ = ఝభఝభ߈ఝ೚ఝ೚߈ఒఒൣ߈                                 (25)																									.	ఝభఝబ൧߈ఝ೚ఝభ߈−

 
and 

݆ܽ݀	Κ൫ߠ൯ is the adjoint of Κ൫ߠ൯,can be obtained as follows: 
cof	߈൫ߠ൯ =

൮
ఝభఝభ߈ ఒఒ߈	 −൫߈ఝభఝబ ఒఒ൯߈	 0

−൫߈ఝ೚ఝభ ఒఒ൯߈	 ఝ೚ఝ೚߈ ఒఒ߈	 0
0 0 ఝభఝభ߈ఝ೚ఝ౥߈ ఝ೚ఝభ߈− ఝభఝబ߈	

൲ .																																			(26) 

The transpose of (26) can be obtained as follows: 

൯ߠ൫߈	݆݀ܽ

= ൮
ఝభఝభ߈ ఒఒ߈	 −൫߈ఝ೚ఝభ ఒఒ൯߈	 0

−൫߈ఝభఝబ ఒఒ൯߈	 ఝ೚ఝ೚߈ ఒఒ߈	 0
0 0 ఝభఝభ߈ఝ೚ఝ౥߈ ఝ೚ఝభ߈− ఝభఝబ߈	

൲ ,																																		(27) 

By substituting (25) and (27) in (24), then the variance-covariance can be written 
as follows:   
ଵି(ߠ)݇

= ൭
ఝ೚ఝ೚ܭ ఝ೚ఝభܭ 0
ఝభఝ೚ܭ ఝభఝభܭ 0

0 0 ఒఒܭ
൱ ,																																																																																																																(28) 

where 

ఝ೚ఝ೚ܭ =
ఝభఝభ߈

ఝభఝభ߈ఝ೚ఝ೚߈ − ఝభఝబ߈ఝ೚ఝభ߈
, 

ఝభఝభܭ =
ఝ೚ఝ೚߈

ఝభఝభ߈ఝ೚ఝ೚߈ − ఝభఝబ߈ఝ೚ఝభ߈
, 

ఒఒܭ =
1
ఒఒ߈

, 

and 
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ఝ೚ఝభܭ = ఝభఝ೚ܭ =
1

ఝ೚ఝభ߈
=

1
ఝభఝ೚߈

. 

The diagonal elements, ݇పప of the variance-covariance matrix, ݇(ߠ)ିଵ  in (28) are the variance of the ML 
estimators,	൫ ො߮଴, ො߮ଵ  መ൯ and the square roots of the diagonal elements of the variance-covariance matrix, areߣ,

the standard errors of the ML estimators,	൫ ො߮଴, ො߮ଵ  .መ൯ߣ,

Thus, (1 − δ)100%  asymptotic confidence intervals (CIs) of ො߮଴ , ො߮ଵ	and	ߣመ  can be obtained as follows:  

෠ߠ 	± ஔݖ
ଶ

(݇పప)
ଵ
ଶ,																																																																																																																														(29) 

where 
෠ߠ = ൫ ො߮଴, ො߮ଵ ,ஔ represent the δ௧௛ quantile of the  ܰ(0ݖ መ൯, andߣ, 1) distribution. 

5. The Moment Estimators  
The moment estimation (ME) method is used to estimate the parameters of 
the	EIDTP(߮଴,߮ଵ,ߣ). The first three distribution moments about the origin for the 
EIDTP(߮଴,߮ଵ,ߣ) can be found to be, 

ଵᇱߤ = ߮ଵ݉ + ߮ଶ
∑ ௞ߣ݇

݇! 		
௠ିଵ
௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

,																																																																																							(30) 

ଶᇱߤ = ߮ଵ݉ଶ + ߮ଶ
∑ ݇ଶߣ௞

݇! 		௠ିଵ
௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

,																																																																																				(31) 

and 

ଷᇱߤ = ߮ଵ݉ଷ + ߮ଶ
∑ ݇ଷߣ௞

݇! 		௠ିଵ
௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

.																																																																																		(32) 

 

Let ݕଵ, ݕଶ,,,,, ݕ௡ be a random sample from ݂(ݕ;߮଴,߮ଵ,ߣ) in (7), and let, 

୰ܯ
ᇱ =

∑ ௜௡ߵ௥ݕ
௜ୀଵ
∑ ௜௡ߵ
௜ୀଵ

, r = 1,2,3. 

be their sample moments about the origin, then solving the following simultaneous 
equations: 

ଵܯ
ᇱ = ߮ଵ݉ + ߮ଶ

∑ ௞ߣ݇
݇! 		

௠ିଵ
௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

,																																																																																		(33) 

ଶܯ
ᇱ = ߮ଵ݉ଶ + ߮ଶ

∑ ݇ଶߣ௞
݇! 		௠ିଵ

௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

,																																																																																	(34) 

and 
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ଷܯ
ᇱ = ߮ଵ݉ଷ + ߮ଶ

∑ ݇ଷߣ௞
݇! 		௠ିଵ

௞ୀଵ

∑ ௞ߣ
݇!

௠
௞ୀ଴ − 1 − ௠ߣ

݉!

.																																																																																				(35) 

For given 	݉	and	ܯ୰
ᇱ, the ME estimators of 	߮଴,߮ଵ	and	ߣ  can be obtained 

numerically. 

6. Endpoint-Inflated Double Truncated Poisson Regression Model  
In this section the endpoint-inflated double truncated Poisson regression (EIDTPR) 
model is proposed to investigate the dependence of the response variable of count 
data containing both extra zeros (left-endpoints) and extra right-endpoint, on a set 
of explanatory variables. The regression model is based on the assumption that the 
response variable has the	EIDTP(߮଴,߮ଵ,ߣ). However, the modeling procedures are 
proposed similar to those for (GLMs), the parameters of the response distribution 
are related to linear predictors through the link functions, the linear predictors 
involve covariates and unknown regression parameters. The regression parameters 
are interpretable in terms of the parameters of the response distribution. 
Let ௜ܻ is the response variable of the ݅th individual, such that ௜ܻ for		݅ = 1,2, … . ,݊ 
has the pmf 	 in (7) with parameters ߮଴ = ߮௢௜ ,߮ଵ = ߮ଵ௜, and	ߣ = ௜ߣ , which satisfy 
the following functional relations: 

݃݋݈ ቀఝ೚೔
ఝమ೔
ቁ = ܽ௜ᇱ	ߙ = ଵ௜ߟ 	,																																																																																																		(36)          

݃݋݈ ቀఝభ೔
ఝమ೔
ቁ = ௜ܾ

ᇱ	ߚ = ଶ௜ߟ 	,																																																																																																			(37)                                         

and 

(௜ߣ)݃݋݈ = ܿ௜ᇱ	ߛ = ଷ௜ߟ .																																																																																																									(38) 
where 
ߙ = ൫ߙଵ, . . . ௣൯,ᇱߙ, ߚ			 = ,ଵߚ) . . . ߛ and		௥),ᇱߚ, = ൫ߛଵ, . . . ,  are vectors of unknown regression				௤൯,ᇱߛ

parameters; (݌ + ݎ + ݍ < ଵ௜ߟ ,(݊ = ,ଵଵߟ) . . . , ଵ௡),ᇱߟ ଶ௜ߟ	 = ,ଶଵߟ) . . . , ଷ௜ߟ  ଶ௡),ᇱandߟ = ,ଷଵߟ) . . . ,  ଷ௡)ᇱ areߟ
predictor vectors.	ܽ௜ = ൫ܽଵ௜ , … ,ܽ௣௜൯,	ܾ௜ = (ܾଵ௜ , … , ܾ௥௜),	 and	ܿ௜ = ൫ܿଵ௜ , … , ܿ௤௜൯ are observations on ݌ᇱ +
ᇱݎ +  ᇱ known covariates, thenݍ

߮௢௜ =
݁ఎభ೔

1 + ݁ఎభ೔ + ݁ఎమ೔ 	,																																																																																																											(39) 

߮ଵ௜ =
݁ఎమ೔

1 + ݁ఎభ೔ + ݁ఎమ೔ 	,																																																																																																										(40) 

߮ଶ௜ =
1

1 + ݁ఎభ೔ + ݁ఎమ೔ 	, 

and 

௜ߣ = ݁ఎయ೔ .																																																																																																																																				(41) 
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7. Model Estimation  

In this section, the maximum likelihood estimation method is used to estimate the 
parameters of   the EIDTPR model. 
Let ݕଵ, … , ݕࣿ 	 be a random sample of size ࣿ drown from EIDTP(߮଴,߮ଵ,ߣ),	 with 
parameters	߮଴ = ߮௢௜,߮ଵ = ߮ଵ௜ and ߣ = ௜ߣ , which satisfy the functional relations 
(39),(40) and (41). 
The likelihood function of the observed sample is:  

ܮ ቀݕ;ߴቁ = ෑ݂(ݕ௜; 	߮௢௜,߮ଵ௜ , (42)																																																																																										௜),ߣ
ࣿ	

௜ୀଵ

 

where 

ߴ = ,ᇱߚ,ᇱߙ) ᇱ),ᇱߛ ߙ	 = ൫ߙଵ, . . . ߚ   ௣൯,ᇱߙ, = ,ଵߚ) . . . ߛ	 ௥),ᇱ andߚ, = ൫ߛଵ , . . . ௤൯ߛ,
ᇱ
  are vectors of unknown 

regression parameters: (݌ + ݎ + ݍ < ݊),  
The likelihood function of EIDTPR model is derived by substituting (7) in (42) as 
follows:  

ܮ ቀݕ;ߴቁ = ෑ൮[߮௢௜][߮ଵ௜] ൦߮ଶ
	௬೔ߣ

∑!൬	௜ݕ
௞ߣ
݇!

௠
௞ୀ଴ − 1− ௠ߣ

݉!൰
൪൲.																																																																												(43)

ࣿ

௜ୀଵ

 

By substituting (39), (40), (41) in (43), the natural logarithm of (43) can be obtained 
as follows 

ℓ൫ߴ൯ = ෍ ଵ௜ߟ] − ݈݊(1 + ݁ఎభ೔ + ݁ఎమ೔)]
{௜:௬೔ୀ଴}

+ ෍ ଶ௜ߟ] − ݈݊(1 + ݁ఎభ೔ + ݁ఎమ೔)]
{௜:௬೔ୀ௠}

 

+ ෍ ൥−݈݊(1 + ݁ఎభ೔ + ݁ఎమ೔)+ݕ௜ߟଷ௜ − −(!௜ݕ)݈݊ ݈݊൭෍
݁௞ఎయ೔
݇!

௠

௞ୀ଴

− 1−
݁௠ఎయ೔

݉!
൱൩

{௜:଴ழ௬೔ழ௠		}

.												(44) 

 The elements of the score vector is obtained by taking the partial derivatives 
of the log likelihood function (44) with respect to the unknown regression 
parameters,	ߚ,ߙ and	ߛ as follows: 
The partial derivative of (44) with respect to ߙ is given by:	 

ఈܷ(ߙ)ᇱ =
߲ℓ൫ߴ൯
ߙ߲ = ෍ ܽ௜ ൬1−

݁ఎభ೔
1 + ݁ఎభ೔ + ݁ఎమ೔ 	

൰
{௜:௬೔ୀ଴}

− ෍ ܽ௜ ൬
݁ఎభ೔

1 + ݁ఎభ೔ + ݁ఎమ೔
൰

{௜:଴ழ௬೔ஸ௠	}

.																												(45) 

 

The partial derivative of (44) with respect to ߚ	is given by: 

ఉܷ(ߚ)ᇱ =
߲ℓ൫ߴ൯
ߚ߲ = ෍ ܾ௜ ൬1−

݁ఎమ೔
1 + ݁ఎభ೔ + ݁ఎమ೔ 	

൰
{௜:௬೔ୀ௠}

− ෍ ܾ௜ ൬
݁ఎమ೔

1 + ݁ఎభ೔ + ݁ఎమ೔
൰

{௜:଴ஸ௬೔ழ௠	}

.																												(46) 

The partial derivative of (44) with respect to ߛ	is given by: 

ఊܷ(ߛ)ᇱ =
߲ℓ൫ߴ൯
ߛ߲ = ෍ ܿ௜ ൮ݕ௜ −

∑ ݇݁௞ఎయ೔
݇!

௠
௞ୀ଴ −݉݁௠ఎయ೔

݉!
∑ ݁௞ఎయ೔

݇!
௠
௞ୀ଴ − 1 − ݁௠ఎయ೔

݉!

൲
{௜:଴ழ௬೔ழ௠}

.																																																																			(47) 
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The score vector for ߚ ,ߙ and ߛ	can be form as follows: 
ܷ൫ߴ൯ = ൫ ఈܷ(ߙ)ᇱ, ఉܷ(ߚ)் 	, ఊܷ(ߛ)ᇱ൯ᇱ.																																																																																																																						(48)  

	The maximum likelihood estimators of 	ߚ ,ߙ and ߛ are obtained as the solution of 
the nonlinear system	ܷ(ߠ) = 0. Such estimators do not have closed form and must 
be computed numerically. 
The variance-covariance matrix 
The observed information matrix contains the negative Hessian matrix. The 
elements of the observed information matrix are obtained by taking the negative 
second derivatives of the log likelihood function with respect to the unknown 
parameters as follows: 

൯൧ߴ൫ܬൣ
௜,௝

= −ቈ
߲ଶ

௜߲ߴ߲ ௝ߴ
ℓ൫ߴ൯቉ቤ

ఏ෡೔,ఏ෡ೕ,

,																											݅, ݆ = 1,2,3. 

The observed information matrix can be written as follows: 

൯ߴ൫ܬ =.ቌ
ఈఈܬ ఈఉܬ ఈఊܬ
ఉఈܬ			 ఉఉܬ ఉఊܬ			
ఊఈܬ				 ఊఉܬ				 ఊఊܬ

ቍ,																																																																																																																														(49) 

where 

ఈఈܬ =
߲ଶℓ൫ߴ൯
ଶߙ߲ = − ෍ ܽ௜ଶ

{௜:଴ஸ௬೔ஸ௠}

݁ఎభ೔ + ݁ఎమ೔ାఎభ೔
(1 + ݁ఎభ೔ + ݁ఎమ೔)ଶ, 

		
ఉఉܬ	 =

߲ଶℓ൫ߴ൯
ଶߚ߲ = − ෍ ܾ௜

ଶ

{௜:଴ஸ௬೔ஸ௠	}

݁ఎమ೔ + ݁ఎభ೔ାାఎమ೔
(1 + ݁ఎభ೔ + ݁ఎమ೔)ଶ, 

ఊఊܬ		 =
߲ଶℓ൫ߴ൯
ଶߛ߲ = − ෍ ܿ௜ଶ

{௜:଴ழ௬೔ழ௠	}

൬∑ ݁௞ఎయ೔
݇!

௠
௞ୀ଴ − 1 − ݁௠ఎయ೔

݉! ൰ ൬∑ ݇ଶ݁௞ఎయ೔
݇!

௠
௞ୀ଴ −݉ଶ݁௠ఎయ೔

݉! ൰

൬∑ ݁௞ఎయ೔
݇!

௠
௞ୀ଴ − 1− ݁௠ఎయ೔

݉! ൰
ଶ  

+ ෍ ܿ௜ଶ
{௜:଴ழ௬೔ழ௠}

൬∑ ݇݁௞ఎయ೔
݇!

௠
௞ୀ଴ −݉݁௠ఎయ೔

݉! ൰
ଶ

൬∑ ݁௞ఎయ೔
݇!

௠
௞ୀ଴ − 1− ݁௠ఎయ೔

݉! ൰
ଶ, 

ఈఉܬ = ఉఈܬ			 =
߲ଶℓ൫ߴ൯
ߚ߲ߙ߲ =

߲ଶℓ൫ߴ൯
ߙ߲ߚ߲ = ෍ ܽ௜ܾ௜

{௜:଴ஸ௬೔ஸ௠	}

݁(ఎభ೔శఎమ೔)

(1 + ݁ఎభ೔ + ݁ఎమ೔)ଶ, 

ఈఊܬ = ఊఈܬ				 =
߲ଶℓ൫ߴ൯
ߛ߲ߙ߲ =

߲ଶℓ൫ߴ൯
ߙ߲ߛ߲ = 0, 

and 

ఉఊܬ	 = ఊఉܬ				 =
߲ଶℓ൫ߴ൯
ߛ߲ߚ߲ =

߲ଶℓ൫ߴ൯
ߚ߲ߛ߲ = 0. 

The variance-covariance matrix for the ML parameter estimators is the inverse of 
the observed information matrix. The inverse of the observed information matrix 
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can be obtained as in (24), whereหܬ൫ߴ൯หis the determinant of ܬ൫ߴ൯, can be obtained 
as follows: 

หܬ൫ߴ൯ห = ቮ
ఈఈܬ ఈఉܬ 0
ఉఈܬ			 ఉఉܬ 0

0 0 ఊఊܬ
ቮ = ఉఉܬఈఈܬఊఊൣܬ 	− ఈఉܬ  (50)																																																																																									ఉఈ൧,ܬ	

 
and ݆ܽ݀	ܬ൫ߴ൯ is the adjoint of ܬ൫ߴ൯, can be obtained as follows: 

cof	ܬ൫ߴ൯ = ൮
ఉఉܬ ఊఊܬ	 −൫			ܬఉఈ	ܬఊఊ൯ 0

−൫ܬఈఉ ఊఊ൯ܬ	 ఊఊܬ	ఈఈܬ 0
0 0 ఉఉܬ	ఈఈܬ − ఈఉܬ ఉఈܬ	

൲,																																																																									(51) 

 
The transpose of (44) can be obtained as follows: 

൯ߴ൫ܬ	݆݀ܽ = ൮
ఉఉܬ ఊఊܬ	 −൫ܬఈఉ ఊఊ൯ܬ	 0

−൫			ܬఉఈ	ܬఊఊ൯ ఊఊܬ	ఈఈܬ 0
0 0 ఉఉܬ	ఈఈܬ − ఈఉܬ ఉఈܬ	

൲	,																																																																						(52) 

 
By substituting (50) and (52) in (24), then the variance-covariance matrix can be 
written as follows: 

൯ߴ൫ܬ
ିଵ

= ቌ
ఈఈܬ ఈఉܬ 0
ఉఈܬ ఉఉܬ 0
0 0 ఊఊܬ

ቍ .																																																																																																																																		(53) 

where 

ఈఈܬ =
ఉఉܬ 	

ఉఉܬఈఈܬ 	− ఈఉܬ ఉఈܬ	
, 

ఉఉܬ =
ఈఈܬ−

ఉఉܬఈఈܬ 	− ఈఉܬ ఉఈܬ	
, 

ఊఊܬ =
1
ఊఊܬ

, 

and 

ఈఉܬ = ఉఈܬ =
ఈఉܬ−

ఉఉܬఈఈܬ 	− ఈఉܬ ఉఈܬ	
=

ఉఈܬ	−	
ఉఉܬఈఈܬ 	− ఈఉܬ ఉఈܬ	

. 

The diagonal elements, ܬపప of the variance-covariance matrix, ܬ൫ߴ൯ିଵ  in (53) are 

the estimated variance of the ML estimators,	൫ߙො መߚ,  ො൯ and the square root of theߛ,
diagonal elements of the variance-covariance matrix, are the estimated standard 
errors of the ML estimators,	൫ߙො መߚ, ො൯. Thus, (1ߛ, − δ)100%  asymptotic confidence 

intervals (CIs) of ߙො,ߚመand	ߛො  can be obtained as follows:  
መߴ 	± ஔݖ

ଶ
(పపܬ	)

ଵ
ଶ, 

where 
መߴ = ൫ߙො,ߚመ ,ஔ represent the δ௧௛ quantile of the  ܰ(0ݖ ො൯, andߛ, 1) distribution. 
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Numerical study 

In this section, a simulation study is conducted to evaluate the performance of the 
proposed methods. A real data set is analyzed to demonstrate how the methods can 
be applied in practice. 

8.1 Simulation Study 
A simulation study is conducted to evaluate the performance of the proposed 
EIDTP(߮଴,߮ଵ,ߣ) distribution and the EIDTPR model. A simulation study is 
performed for a set of initial parameter values, sample sizes and right endpoints. 
For each combination of the parameter values, sample sizes and right endpoints, 
the	EIDTP(߮଴,߮ଵ,ߣ)  is fitted and the variance, biseଶ, mean square error (MSE) are 
calculated using the following formulae: 
biseଶ = (estimate	of	the	parameter − true	value	of	the	parameter)ଶ.										(54) 
MSE =variance (estimate) +biseଶ(estimate).                               (55) 
The following steps are used to compute the ML estimates for	EIDTP(߮଴,߮ଵ,  .(ߣ
1. For given values of the parameters ߮଴ = 0.4,			߮ଵ = 0.3		and	ߣ = 3 counts are 

generated from	EIDTP(߮଴,߮ଵ,  ݊] using (7) for different sample sizes  (ߣ
=50,100,300 and 500] and different values of the right endpoint [m=8, 13 and 20]. 

2. Obtain the ML estimates by solving (17), (18) and (19), respectively. 
3. Compute the biseଶ, MSE for each estimate using (54), (55) respectively. 
4. Repeat the above steps for all sample sizes 500 times.  
5. The results of the simulation study are illustrated in Table 1.  

It is observed from Table 1 that the biseଶ, and MSE decreased as ݊ increased.  
Table 1: The Estimates ܍ܛܑ܊૛, MSE and C.I. for the Parameters for the ۳۷۲۾܂(࣐૙,࣐૚,ࣅ) 

The EIDTPR   model is used with the function relations (36), (37) and 
(38).Independent samples of size n are generated from EIDTP(߮଴,߮ଵ, ߣ ) using 

 ݉ = 8 ݉ = 13 ݉ = 20 
Sample Size Parameter Estimates MSE bise2 Estimates MSE bise2 Estimates MSE bise2 

n=50 
߮଴  0.4031 0.0048 9.745E-06 0.3986 0.005 1.965E-06 0.4018 0.0045 3.092E-06 
߮ଵ 0.3009 0.0038 7.748E-07 0.2988 0.0041 1.432E-06 0.2986 0.004 1.842E-06 
 0.0653 0.071 3.2556 0.0665 0.0765 3.2579 0.0657 0.0726 3.2563 ߣ

n=100 
߮଴  0.4007 0.0022 5.205E-07 0.4052 0.0025 2.666E-05 0.3995 0.0025 2.701E-07 
߮ଵ 0.3005 0.0021 2.135E-07 0.2992 0.002 6.71E-07 0.2992 0.0021 5.735E-07 
 0.0662 0.0703 3.2572 0.0652 0.0695 3.2554 0.0656 0.0690 3.2561 ߣ

n=300 
߮଴  0.4028 0.0008 8.054E-06 0.4016 0.0008 2.413E-06 0.3994 0.0008 3.080E-07 
߮ଵ 0.2989 0.0007 1.133E-06 0.2995 0.0007 2.485E-07 0.3001 0.0007 1.179E-08 
 0.0616 0.0648 3.2483 0.0636 0.0664 3.2522 0.0615 0.0645 3.2480 ߣ

n=500 
߮଴  0.3980 0.0005 4.066E-06 0.4003 0.0005 9.126E-08 0.3991 0.0005 8.261E-07 
߮ଵ 0.3016 0.0004 2.468E-06 0.3003 0.0004 1.065E-07 0.2997 0.0004 1.087E-07 
 0.0618 0.0641 3.2485 0.0614 0.0643 3.2478 0.0603 0.0629 3.2455 ߣ
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initial values ߮଴ = 0.4,			߮ଵ = ߣ	݀݊ܽ		0.3 = 3 . The distribution parameters are 
related to a set of explanatory variables with unknown coefficients through link 
function.  

The following steps are used to compute the ML estimates for the	EIDTPR model 
for different sample sizes [n=50,100,300 and 500] and different values of the right 
endpoint [m=8, 13 and 20]. 

1. Three covariates are generated from ܷ(1, 2). 

2. Let the intercept ߙ௢ = ௢ߚ = ௢ߛ = 0 

3. The initial values of the regression coefficient are set to be  ߙଵ = 	 ଵߚ = ଵߛ = 0.4 

4. Obtain the ML estimates by solving (45), (46) and (47), respectively. 

5. Compute the bias, MSE for each estimate using (54), (55) respectively. 

6. Repeat the above steps for all sample sizes 500 times.  

7. The results of the simulation study are illustrated in Table 2. 

It is observed from Table 2 that the bias, and MSE decreased when n increased.  

Table 2: The simulation results of the MLE, MSE,  ܍ܛܑ܊૛ , and SE for the 
Parameters for the ۳۷۲܀۾܂ model 

  ݉ = 8 ݉ = 13 ݉ = 20 
Sample Size Parameter Estimates MSE SE bise2 Estimates MSE SE bise2 Estimates MSE SE bise2 

n=50 
 ଵ 0.2045 0.1475 0.2303 0.3070 0.1877 0.1517 0.2308 0.3135 0.1917 0.1548 0.2307 0.3184ߙ
 ଵ -0.0036 0.2834 0.2404 0.4748 0.0042 0.2698 0.2387 0.4610 -0.0017 0.2831 0.2396 0.4748ߚ
ଵߛ  0.6706 0.0991 0.1116 0.2939 0.6671 0.0929 0.1020 0.2867 0.6574 0.0878 0.1023 0.2776 

n=100 
 ଴ 0.1818 0.0969 0.1587 0.2678 0.1964 0.0919 0.1597 0.2577 0.1906 0.0938 0.1596 0.2614ߙ
 ଵ -0.0257 0.2387 0.1693 0.4582 0.0075 0.2109 0.1689 0.4269 0.0041 0.2150 0.1688 0.4318ߚ
ଵߛ  0.6878 0.0952 0.0783 0.2984 0.6813 0.0909 0.0732 0.2923 0.6890 0.0944 0.0723 0.2985 

n=300 
 ଵ 0.1861 0.0626 0.0902 0.2334 0.1820 0.0629 0.0902 0.2341 0.1872 0.0615 0.0902 0.2311ߙ
 ଵ -0.0064 0.1840 0.0969 0.4179 -0.0049 0.1831 0.0967 0.4168 -0.0079 0.1857 0.0969 0.4198ߚ
ଵߛ  0.6977 0.0931 0.0456 0.3016 0.6941 0.0902 0.0418 0.2974 0.6913 0.0884 0.0419 0.2943 

n=500 
 ଵ 0.1796 0.0581 0.0698 0.2307 0.1836 0.0569 0.0699 0.2281 0.1887 0.0541 0.0699 0.2219ߙ
 ଵ -0.0089 0.1785 0.0748 0.4158 -0.0050 0.1759 0.0749 0.4126 0.0003 0.1707 0.0749 0.4063ߚ
ଵߛ  0.6972 0.0908 0.0351 0.2993 0.6907 0.0867 0.0323 0.2926 0.6913 0.0870 0.0324 0.2932 

 

8.2 Application  

An Application using real data set is introduced to demonstrate the importance and 
flexibility of the proposed methods. The performance of the distribution is assessed 
using goodness of fit test and different information criteria. The chi-squared (2) 
test is applied for testing the goodness of fit of EIDTP(߮଴,߮ଵ,ߣ) to the data set. - 
log-likelihood, Akaike information criteria (AIC) and Bayesian information criteria 
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(BIC) are used for comparing the methods, Smaller values of– log-likelihood, AIC 
and BIC indicate better models. For performing significance tests of hypothesis 
about parameters in the EIDTP(߮଴,߮ଵ, (ߣ , the Wald's statistics which has an 
approximate standard normal distribution is used. 

The application is carried out using a sample of 16120 individuals in working ages 
(16-60 years) from 7526 family of the household income, expenditure and 
consumption survey (HIECS) carried out in Egypt at 2012- 2013 is conducted. The 
data set is obtained from the Central Agency for Public Mobilization and Statistics. 
Egypt, Arab Rep. 2012-2013. The sample contains the number of weekly worked 
days (NWWD) by 16120 individuals in the last week before the survey. The data 
set contains 8899 zeros and contains 4170 six; i.e. the data set contains non- 
negligible number of zeros (left –endpoint) and six (right-endpoint). Summary 
statistics of the NWWD by 16120 individuals of 7526 family in Egypt in 2012 - 
2013 is presented in Table 3. The bar chart and the normal Q-Q plot of the number 
of the data is presented in Figures 1 and 2. It is noticed that the data contains 
inflation at two points 0 and 6. 

Table 3: Sample Summary Statistics of the Number of Weekly Worked Days 
(NWWD) by 16120 Individuals of 7526 Family in Egypt in 2012 - 2013. 

Mean Min. 1st qu. 3rd qu. Max. SD 
2.39553 0.0000 0.00 6.00 6.0000 2.7370 

 

 

 
Figure 2: The Number of Weekly Worked Days by 16120 

Individuals of 7526 Family in Egypt in 2012 – 
2013 

Figure 3: The normal Q-Q plot of the Number of 
Weekly Worked Days by 16120 Individuals 
of 7526 Family in Egypt in 2012 – 2013 

The observed and fitted frequency distributions based on the MLE and ME of 
the	EIDTP(߮଴,߮ଵ,ߣ) are presented in Table 4.  
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Table 4: Observed and Fitted Frequency Distributions of the Number of Days 
Worked by 16120 Individuals of 7526 Family in Egypt in 2012 - 2013. 

Observed Frequency Number of days worked by an individual 
 0 1 2 3 4 5 6 
 8899 54 89 307 562 2039 4170 

MLE EIDTP(߮଴ ,߮ଵ  4170 2021 634 301 81 14 8899 (ߣ,

ME EIDTP(߮଴ ,߮ଵ  4244 2000 629 234 73 14 8925 (ߣ,

Point estimates with the corresponding standard errors and confidence intervals for 
the parameters of	EIDTP(߮଴,߮ଵ,ߣ) using the data set of  the number of days worked 
by 16120 individuals of 7526 family in Egypt in 2012 – 2013, are summarized in 
Table 5. 

Table 5: The Parameters Estimates and the Corresponding Standard Errors 
for the ۳۷۲۾܂(࣐૙,࣐૚,ࣅ) Using the Data Set of the Number of Weekly 
Worked Days By 16120 Individuals of 7526 Family in Egypt in 2012 – 
2013 

 
MLE    ME 
Point Std. Error Interval  Point Std. Error Interval 

EIDTP(߮଴,߮ଵ,ߣ) 

෠ 11.4493 0.2607 (10.938, 11.9602)  11.4569 0.2610 (10.945, 11.9685) 
ො߮௢ 0.5520 0.0032 (0.5458, 0.5582)  0.5537 0.0030 (0.5479, 0.5594) 
ො߮ଵ 0.2587 0.0032 (0.2525, 0.2649)  0.2633 0.001 (0.2617, 0.2649) 

෣(ܻ)ܧ  2.3955  2.3955 

ܸ(ܻ)෣  7.4523  7.4911 

The estimated variance of the random variable ܻ~EIDTP(߮଴,߮ଵ,  reflect the (ߣ
variation of the data which has more frequencies for some observations [namely 
zero counts and six counts]. Unlike the Poisson distribution where the mean and 
variance are equal, the	EIDTP(߮଴,߮ଵ,ߣ)  can model data where mean and variance 
have different values. 
 The results of  ଶ, - log-likelihood, AIC and BIC are summarized in Table 6. 
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Table 6: Validation of the	۳۷۲۾܂(࣐૙,࣐૚,ࣅ) to the Data Set of the Number of 
Weekly Worked Days by 16120 Individuals of 7526 Family in Egypt in 
2012 – 2013. 

 
Expected frequencies 
MLE ME 

2 128.371 154.6395 
df 3 3 
p-value < .00001 < .00001 
-Log-Likelihood 8296.73 8297.75 
AIC 16599.46 16601.51 
BIC 16606.08 16608.13 

An application using a sample of 9874 individuals of the data set of the HIECS 
carried out in Egypt at 2012- 2013 is conducted. The data are obtained from the 
Central Agency for Public Mobilization and statistics.  
The present application introduces a study of the effect of some explanatory 
variables, which are the age, average number of working hours per day (ANWHD) 
and average daily income per capita (ADIC), on the response variable Y, which is 
the NWWD. Outliers are detected according to ADIC, so the sample size became 
9288 individuals. 
Table 7 presents summary statistics of the NWWD by 9288 individuals and three 
quantitative random variables which are the age, the ANWHD and the ADIC that 
are assumed to affect the NWWD. 

Table 7:  Sample Summary Statistics of the NWWD, the age, the ANWHD and 
the ADIC for 9288 individuals in Egypt in 2012 - 2013. 

Variable Min. 1st qu. Mean Median 3rd qu. Max. 
NWWD 0.000 0.000 2.286 0.000 5.000 6.000 

age 16.00 22.00 3303 30.00 44.00 60.00 
ANWHD 0.000 0.000 3.474 3.000 8.000 24.000 

ADIC 3.353 18.904 27.453 25.233 34.249 62.466 

The bar chart of the NWWD by 9288 individuals, the histograms of the age, the 
ANWHD and ADIC for 9288 individuals in Egypt in 2012 – 2013 are presented in 
Figures 3, 4, 5 and 6 respectively. 
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Figure 3: The Number of Days Worked by 9288 

Individuals in Egypt in 2012 – 2013 
Figure 4: The Age of 9288 Individuals in Egypt in 

2012 – 2013 
  

  
Figure 5: The Average Number of Working Hours 

Per Day (ANWHD) for 9288 Individuals 
in Egypt in 2012 – 2013 

Figure 6: Average Daily Income per Capita 
(ADIC) for 9288 Individuals in Egypt in 
2012 – 2013 

 

It is noticed from Figure 3 that the data contains inflation at two points 0 and 6, such 
that the frequency of zero is 5297 and the frequency of 6 is 2295. The endpoint 
inflated Poisson regression model using the functional relations (36), (37) and (38) 
can be used, assumed that intercepts are set to be zero. The parameter estimates and 
the corresponding standard errors for the EIPR model are summarized in Table 8. 
Table 8: The parameter estimates of the ۳۷۲܀۾܂ model 

Parameter Estimate Standard Error t-value P-value 
2e 49.99 0.00077 0.03863 ߙ  − 16 
2e 48.7 0.00497 0.24183 ߚ  − 16 
2e 70.83  000127 0.09025 ߛ  − 16 

It is noticed from Table 8 that age has a positive effect on the proportion of zero in 
the number of weekly worked days by the individuals. It means that as the age 
increase, the number of days worked by the individuals are set to be zero day. The 
average number of working hours per day (ANWHD) has a positive effect on the 
proportion of m in the number of weekly worked days by the individuals. It means 
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that as the average number of working hours per day increase, the number of days 
worked by the individuals are set to be six days. The average daily income per capita 
(ADIC) has a positive effect that the number of days worked by the individuals rang 
between one and five days. It means that as the average daily income per capita 
increase, the number of days worked by the individuals rang between one and five 
days. 

8. Conclusions 
EIDTP(߮଴,߮ଵ,ߣ) distribution is suggested for modeling data consisting of inflated 
counts of zeros and inflated counts of m, assuming all zeros and ݉ are from one 
structural source rather than two sources (both structural and sampling). The 
distributional properties and two parameters estimation methods, maximum 
likelihood and method of moments are considered. The method of maximum 
likelihood estimators is shown to have better estimates on the real data set. 
The	EIDTPR model is suggested to investigate the dependence of the response 
variable of count data containing both extra zeros (left-endpoints) and extra right-
endpoint, on a set of explanatory variables. A simulation study is conducted to 
evaluate the performance of the proposed methods. A real data set is analyzed to 
demonstrate how the methods can be applied in practice. The numerical study is 
carried out using R program, version 4.1.2.   
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  الملخص العربي
ENDPOINT-INFLATED DOUBLE TRUNCATED POISSON MODEL 

  البترالموسع مزدوج  نموذج انحدار بواسون
  

 Distribution) Endpoint-Inflated Double البتر مزدوجبواسون الموسع  توزيع تم اقتراح

Truncated Poisson(  ائي يأخذ قيم لبيانات وذلك لتمثيل متغير عشوCount Data) والتي (

بالإضافة الي وجود قيمة أخرى ذات تكرار  (Left Endpoint)ارالأصف تحتوي على عدد كبير من

 ةبواسط تفسيرها يمكن لا التيو ،للبيانات خرىالأ القيمب مقارنةً )(Right Endpoint أيضاكبير 

 ثلاث من خليطا اسون الموسع مزدوج البتربو توزيع الفروض الأساسية لتوزيع بواسون. يعد

 التيالقيم ، وباقي  (m) نقطةالعند وقيمة الاحتمال  ،النقطة (صفر)عند  قيمة الاحتمال ،مكونات

 Double Truncated Poisson ). البتر  مزدوج بواسون يمثلها توزيع العشوائييأخذها المتغير 

Distribution)  .تم استخدام كل من طريقة الإمكان الأكبر تمت مناقشة بعض خصائص التوزيع

 نموذج انحدار على المقدرات وفترات الثقة لمعالم التوزيع. تم اقتراح وطريقة العزوم للحصول

). Endpoint-Inflated Double Truncated Poisson Model( بواسون الموسع مزدوج البتر

تم تحليل مجموعة  الطرق المقترحة.لتقييم أداء  (Simulation Study) تم إجراء دراسة محاكاة 

  .بيانات حقيقية لتوضيح كيف يمكن تطبيق الأساليب عمليا

 


