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Abstract

This article is concerned with Endpoint-Inflated Double Truncated Poisson
distribution which is developed for modeling count data with excessive zeros (left-
endpoint) and excessive right-endpoint(m) compared with other observations of the
data. This method for modeling such data is based on an assumption that the random
variable is generated from a mixture distribution of three components. The
probability when the value for the response variable is zero, the probability when
the value for the response variable is m, and the other counts are defined by Double
Truncated Poisson distribution. Some of its main properties are discussed. The
maximum likelihood and moment methods of estimations are utilized to derive
point estimators and confidence intervals for the parameters. Regression model
based on the distribution is proposed and the corresponding computational
procedures are introduced. A simulation study is conducted to evaluate the
performance of the proposed methods. A real data set is analyzed to demonstrate
how the methods can be applied in practice.

Keywords: Count data; Truncated Poisson distribution; Zero-Inflated Poisson
distribution; Endpoint-inflated Poisson distribution; Zero- one Inflated
Poisson distribution; Maximum likelihood estimators; Moment
estimators.

1. Introduction

Many studies in different areas involve nonnegative integer values. The Poisson
models are the most used tools for modeling count data. In practice, however, count
data are often over dispersed, the variance can be greater than the average value.
One frequent manifestation of over dispersion is that the incidence of zero counts is
greater than expected for the Poisson distribution. Motivated by this fact, some
studies have focused on inflated distributions for modeling count data with large
frequencies of zeros that cannot be explained by models based on standard
distributional assumptions. Such data are common in many fields including
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medicine, public health studies, epidemiology, ecology, sociology, psychology,
econometrics, agriculture, engineering, manufacturing, and road safety. Inflated
distributions can be thought as finite mixture distributions which involve a finite
number of components to deal with the nature of the data. Mixture distributions
arise when each distribution separately cannot describe the data. Some of these
studies are interested in zero-inflated and others are interested in zero-and-one
inflated families of models. zero-inflated distribution is based on an assumption that
the random variable is generated by a mixture of two distributions, one is the
discrete distribution and a degenerate distribution at zero [see Mullahy (1986)
developed zero inflated family of models, Lampert (1992) extended zero-inflated
Poisson (ZIP) distribution]. Many studies build regression models based on Zero-
inflated distributions to clarify the relation between the covariates and the response
variable. [see Lampert (1992) used a parametric ZIP regression model to study the
effects of covariates with parameters of interest via appropriate link functions,
Ridout et al. (2001) derived a score test for testing a ZIP regression model against
zero-inflated negative binomial (ZINB) alternatives which the non-zero part of the
count data is over dispersed and another distribution such as ZINB may be more
appropriate than ZIP, Diop and Dupuy (2014) developed zero inflated Bernoulli
(ZIBER) regression model to fit binary data that contain too many zeros. Fitriani et
al. (2019) presented Simulation on the ZINB to model over dispersed Poisson
distributed data, Diallo et al. (2019) presented estimation in zero-inflated binomial
(Z1B) regression with missing covariates].

Zero-and-one inflated distributions have been developed to fit count data with
excess zeros and ones simultaneously. There are many methods to build zero-and-
one inflated distributions and one of these methods is based on an assumption that
the random variable is generated by a mixture of three distributions, a degenerate
distribution at zero, a degenerate distribution at one and a discrete distribution
representing the other values [see Edwin (2014) considered zero-one inflated
geometric (ZOIG) distribution in analysis of a real life. Alshkaki (2016) introduced
zero-and-one inflated power series distributions, Poisson, binomial, negative
binomial, geometric and logarithmic series distributions. Alshkaki (2016) discussed
properties and parameters estimators of zero-and-one inflated Poisson (ZOIP)
distribution. Alshkaki (2016) provided mathematical properties of zero-one inflated
logarithmic series (ZOILS) distribution. Alshkaki (2016) provided mathematical
properties of zero-one inflated negative binomial (ZOINB) and zero-one inflated
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binomial (ZOIB) distributions. Zhang et al. (2016) studied the likelihood based
ZOIP model without covariates. Tang et al. (2017) studied the statistical inference
for (ZOIP) distribution. Liu et al. (2018) derived the objective Bayesian estimation
of ZOIP model, Alshkaki (2019) derived a combined estimation method to estimate
the parameters of the (ZOINB) distribution, Tlhaloganyang et al. (2019) derived
Structural properties of zero-one-inflated negative-binomial crack (ZOINBCR)
distribution].

To investigate the relation between the covariates and the response variable, many
studies built regression models based on zero-and-one inflated distributions [see
Deng et al. (2015) introduced generalized endpoint-inflated binomial model, Liu et
al. (2018) introduced zero-and-one inflated Poisson regression model].

In this article, endpoint-inflated model is developed to fit count data to handle
variability from both excessive zeros and excessive right-endpoint m compared
with other observations in the data assuming all zeros and m are from one structural
source. The proposed model is an extension of zero- inflated models through
addition of the right-endpoint inflation parameter. It provides alternative
distributions for modeling count data that is found to be characterized by excessive
zero and excessive right-endpoint counts. The model is based on an assumption that
the random variable is generated from a mixture distribution of three components.
The probability when the value for the response variable is zero, the probability
when the value for the response variable is m, and the other counts are defined by
Double Truncated Poisson distribution, so the model is said to be inflated since it
allows for positive probability mass at some points, which assign higher
probabilities to zero and m.

This article unfolds as follows; Section 2 presents the double truncated Poisson
distribution and its mean and variance. The endpoint-inflated double truncated
Poisson distribution is suggested in Section 3 and its main properties such as the
mean and variance, moment generating function and the probability generating
function are presented. Section 4 discusses the maximum likelihood estimators of
the distribution and the elements of the Hessian matrix; the Fisher information
matrix and the variance-covariance matrix of the maximum likelihood estimators
are derived. The moment method is used to estimate the parameters in Section 5.
Regression model based on endpoint-inflated double truncated Poisson distribution
is suggested in Section 6. Section 7 discusses the maximum likelihood estimators
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of the model and the variance-covariance matrix of the maximum likelihood
estimators is derived. In Section 8 a simulation study is conducted to evaluate the
performance of the proposed methods and a real data set is analyzed to demonstrate
how the methods can be applied in practice. Finally, some concluding remarks were
given in section 9.

2. Double Truncated Poisson Distribution

This section is devoted to the description of the double truncated
Poisson distribution. count data can be truncated where some values in a specific
range cannot be observed. Count data in which zero and m counts cannot be
observed are called double truncated count data. Double truncated Poisson data are
a combination of the left truncated and right truncated Poisson data. Right
truncation happens from loss of observations greater than some specified value. Left
truncation happens from loss of observations smaller than some specified value.

Let Y be a discrete random variable has the pmf f(y) given by

f(y)=

From Cohen (1954) the pmf for a discrete random variable has a double truncated
Poisson distribution denoted by DTP(A) is given by

e~y
y!

, y=012,.. , A1>0 (1)

P(Y——k|0<k<m)
= . f 2
P(O<k<m). ). 2)

where f; is referred to as parent-process. the denominator gives a normalization that
accounts for the truncation of f;.
by substituting (1) in (2) then

y R4
P(Y=kl0<k<m)= O<k<m 3)

Ak Ay
y!( ?=0H_1_m)

The first two moments of the distribution are given by

n ki
k=0 |
B(r) = —— K — @)
m A 1 A
k=0 [! m!
P

k=ofr — 1 =7
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The variance is given by

k=0 e /}k k=0 —kluk
V(Y) — & k! — - - k! — . (6)
m A A m A A
k=0 [1 ml! k=0 [! ml!

While the regular Poisson distribution typically encounters difficulty due to the
assumed equality of mean and variance, the mean and variance of the doubly
truncated Poisson distribution are characteristic of under dispersion where the
variance is less than the mean.

3. Endpoint-Inflated Double Truncated Poisson Distribution

This section is devoted to the description of the endpoint-inflated double truncated
Poisson distribution. The proposed model is said to be inflated since it allows for
positive probability mass at some points (zero and m). The distribution has been
developed for count data with excessive zeros assuming all zeros are from one
structural source and with excessive right endpoint m assuming all m are from one
structural source. Thus, the random variable is generated by a mixture of the
probability when the value for response variable are zeros and right-endpoint m,
and the other counts are defined by DTP(A).

Such data are common in many fields including psychological, social, and public
health related research. For example, many patients go to the cosmetology many
times when others never visit; the number of working days in a week that
individuals work may be zero due to unemployment as may have any value greater
than zero. patients may be infected by the virus and have not received any doses of
prescription medication for lake of detection while others have received multiple
doses for early detection and the number of days people with psychiatric problems
spent in hospitals exceeds months while others are not fully hospitalized.

Let Y be a discrete random variable has an endpoint-inflated double truncated
Poisson distribution, denoted by EIDTP(¢,, ¢,4).Suppose that ¢,(0) is the
probability when the value for response variable is zero, g, (m) is the probability
when the value for response variable is m and that ¢, (k),k =1,2,..,.m—1 isa
probability function when the response variable is another positive integer.
Therefore, the probability function of the EIDTP(¢,, ¢4, 4) is given by:

2,(0) for k=0,
P(Y =kipg ¢y, 4) = {gl(m) for k=m,
(1= g,(0) — g, (M) g, (k), for 0<k<m.
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All parts of the distribution are based on probability functions for nonnegative
integers [see Mullahy (1986)].In terms of the general model above, let ¢,(0) =
@y, ¢1(m) = @, and g, (k) is the pmf of DTP(A) in (3).

The EIDTP(¢q, 1, 1) can be expressed as a mixture of three components as
follows:

(®o if y=0,
Lo, if y=m, (7
5 oo o ) = | »

| P2 Nk m\’
U (S -1-50)

@, € [0,1], ¢, € [0,1] denote the probability values when the values for response
variable are zero and right-endpoint m, respectively and ¢, = 1 — ¢, — ¢, € [0,1]

if 0<y<m.

,assuming that all zeros and extra right-endpoint m are from one structural source
rather than two sources.

Figure 1 shows some different EIDTP(¢,, ¢1,4) probability mass functions along
with the corresponding values of (¢,, @1,4). It is noteworthy that the probability
functions can display different shapes depending on the values of the three
parameters. In particular, when ¢, = ¢; = 0, the EIDTP (¢, ¢1,A) in (7) becomes
the DTP(A) in (3).

flv)

25,0.25,4), m=99

0.25,5), m=9g. —1.0,0,2)

Figure 1 Endpoint-inflated Double Truncated Poisson Probability Mass Functions for different
combinations of (¢, ¢1,4) and m

The cumulative distribution function (cdf) of the EIDTP (¢, ¢4, ) is given as:
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F(y, @0, ¢1,A) =P(Y <y) = Z f; 00,01, 2)

Y=<y

y .
= [plI0=sy<1)+ ‘Po"“PzZ Afl i
lOl'< k=0 T 1- W)
Some Properties of the Endpoint-Inflated Double Truncated Poisson
Distribution
e The r'" moment about the origin of the random variable Y can be obtained as
follows:

IA<sy<m)+I(y=m). (8)

/1k
E(rm) = Z Y G0 01, 2) = gym” + ¢, Z K e gy =120 ©
k=1 k! ( k=0 kl —-1- m)
e The mean and variance respectively, are given by:
m—1 kA
Lkt RT
E(Y) = om+ ¢, K T (10)
m = 1 A
k=0 ! m!
2
s 1k2/1" m-1 kk_/ll"
V() = |pim? + ¢, % | — |lpim + @, © m| (11)
m A A m A A
k=0T~ L~ 1 k=0T~ LT

e The moment generating function and the probability generating function,
respectively, are given by

Zm 1 (etl)k

My(t) = @ + ¢1emt + P2 k m | (12)
w T
k=0 [ m!

mo1 (¥
_ m k=1 " [l

Gy(t) = @, + @it™ + @, T iz (13)

m

k=or — 1 =7
By substituting ¢, = 0, ¢; = 0, the main properties of the DTP(A) can be obtained.
4. The Maximum Likelihood Estimators

The maximum likelihood estimation (MLE) method is used to estimate the
parameters of the EIDTP(¢@g, ¢1,4).

Let y;,..,y, be a random sample of size n drown from the pmf in (7). The
likelihood function of the observed sample is given by:

L(Q;z) =Hf(yi;<po,<p1,/1), (14)
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where 8 = (¢4, ¢1,1).
The likelihood function of EIDTP(¢,, ¢4, 4) is derived by substituting (7), in (10).

[p,]" 7
L(8;y) = [@,)lp.]" = —). (15)
( X) @ ' (ZZL:O% 1 %) i=1:11 (yl !)

where

I, = L,(y) =#{i: y; =0},

L= L) =#{ii y; =m},

and

L=n—1I,-1,.

Here # x is used to denote the number of elements of the set x. The natural
logarithm of (15) can be obtained as follows:

2(0) = nL(8:y) = I, In(p,) + L In(p,)

n—-I; n—I, m
Ak Am
+1,In(p,) + Z y; In(A) — Z Iny,!'—1, ln( i 1- —'> (16)
i=lo+1 i=lo+1 k=0 m

The elements of the score vector for ¢,, @, and A can be obtained by taking the
first partial derivatives of the log likelihood function (16) with respect to the
unknown parameters 8 = (o, ¢;,4), as follows:

09y  ©o @2
a¢(e) I, I (18)
09, D1 402,
and
_1, kAk-1 pmam-1
00(0) _ EZilijn¥i LR~ —
Y I p — — ™ L. (19)

k=T — 1 =700
From (17), (18) and (19), the score vector for ¢,, ¢, and A can be written as
follows:
0(o) = (6{’(@) a¢(8) 24(0) )
B dpo  Odpy 04
The ML estimators of ¢,, ¢, and A can be obtained as the solution of the nonlinear
system.
(6{’(@) a¢(e) 0¢(6) )
dp, 0@, ' 04
¢, and ¢, can be estimated respectively as follows:

T
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~~

Po =~ (20)
and

S 1

»1 — n (21)

The ML estimator of A cannot be obtained in closed form, hence estimation must
be accomplished numerically using methods such as Newton-Raphson.

The variance-covariance matrix

The variance-covariance matrix of the ML estimators of the EIDTP (¢, ¢1,1), is
the inverse of Fisher information matrix, the elements of the Fisher information
matrix can be obtained by taking the negative expectation of the Hessian matrix.
The elements of the Hessian matrix of the ML estimators of the EIDTP(¢g, ¢1,4),
are obtained by taking the second derivatives of the natural logarithm of the
likelihood function, {’(Q) in (16) with respect to the unknown parameters, 6 =

(@0, ®1, 1), as follows:

62
J(9)]. . = [ {’(Q)l 0, j=123.
[9] 69169] 91-,9,',
the Hessian matrix can be written as follows:
]‘Po‘Po ]‘Po‘Pl O
](Q) = Jor0o Jorion O | (22)
0 0 Ju
where
_o%¢(e) -1, I
PoPo — - -

P2 @2 @7

_o%¢(e) -I, L

]<P1<P1_ 6¢12 4012 4022,

_ k(k =122 m(m—1)am2
I = a2¢(8) _ _Z?z,fﬂyi _ ( k=0 k! - ml )1
M9z T 22 m A~ A i

k=ofr 1 =7
2

k=0""fI " ml

eti--5)
k=0 ! m!

( m k-1 mlm—l)

—+

712,
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_o%e(e) _ o%e(6) _ 1
6§006¢1 aqolaqo (%)

Jooor = o100

21

o

o _o2e(e) _a2¢(8)
Joor = Jagpo = 01~ 010,

and

a*¢(e) _a¢(6)
Jour = J20: = 55570 = a0, -
The elements of the Fisher information matrix of the ML estimators of
the EIDTP(¢,, ¢4, 4),are obtained by taking the negative expectation of the Hessian
matrix (22) as follows:

[x(8)], ;=E [09(3(239,- {)(Q)l

Note that E(I,) = ¢,, E(I;) = @,and E(I;) = ¢,

Q=123

9;,9;,

4

Ak am
Y(rofr1-5)

The Fisher information matrix can be written as follows:

[see Deng et.al. (2015)].

K‘Po‘Po K‘Po‘Pl 0
k(@)= | Koo Ko O (23)
0 0 Ky
where
K= E(aZe(g))_ 1.1
PoPo a(pg @, ®, )
K= E(aZe(g))_ 1.1
P11 a(plz o, ®, )
0%¢(0
K =—E ©)
dA?
o[ AG m D) (o ity
K i=lp+171 | = k! ml B — 7 i |
A2 22 2 m A, _Am K e |
k=0 [l m! ’<=0H_1_m

ZUO_ (240 2

99,09, 00,00,) @,

R Cisd Ch v L) A W
9ok T Me0 T\ 99,01 )~ T\ 0Adg, ) T

Kpoor = Koo = _]E(
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and

Kpus = Koy = B (l@) -k (l@) -0

¢, 0 EYErA
The variance-covariance matrix of the ML estimators of the EIDTP(¢@,, ¢1,4), is
the inverse of Fisher information matrix (23), can be obtained as follows:

-1 1
K(8) =i—=7adjK(8), (24)
@) =gy ¥ <@
where
|K(8)| is the determinant of K(8), can be obtained as follows:
K‘Po‘Po K‘Po‘Pl 0
|K(Q)| = K‘P1‘Po K<p1<p1 0= KM[K%%K%% - K%%le(po] ' (25)
0 0 K
and
adj K(8) is the adjoint of K(8),can be obtained as follows:
cof K(9) =
K‘P1<P1 Kia _(K<P1‘Po KUL) 0
_(K‘PO‘P1 KAA) K‘Po‘Po KAA 0 ' (26)
0 0 K000 Ko101 ~ Koop1 Koy
The transpose of (26) can be obtained as follows:
adj K(6)
K<p1<p1 Kz _(K‘Po‘Pl KM) 0
= ~(Kpyoo K11) Koo, Kia 0 ' @27
0 0 Kp000Ko101 ~ Kooo1 Koie

By substituting (25) and (27) in (24), then the variance-covariance can be written
as follows:

k(@)1
K®o%o K®o®1 O
= (K<p1<po K®11 ) (28)
0 0 KA
where
K®o%o = K(p1(p1 :
K%%le% - K%%lewo
K9101 = K‘Po‘Po ,
K%%le% - K%%lewo
KM = i
Kia
and
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1

1
K®o¥1 = KP1Po = = .
PoP1 K‘Pl‘Po
The diagonal elements, k* of the variance-covariance matrix, k(6)~* in (28) are the variance of the ML

estimators, ((ﬁo, @1,1) and the square roots of the diagonal elements of the variance-covariance matrix, are
the standard errors of the ML estimators, (@,, @1, 4).
Thus, (1 — 8)100% asymptotic confidence intervals (Cls) of @,, $; and 1 can be obtained as follows:

6 +z5(kv)2, (29)
where 2

8 = (@0, §1, 1), and zs represent the 8 quantile of the N (0, 1) distribution.

5. The Moment Estimators

The moment estimation (ME) method is used to estimate the parameters of
the EIDTP (o, ¢1,4). The first three distribution moments about the origin for the
EIDTP(¢q, ¢4, 4) can be found to be,

m—1 kA"
, Lkt RT
Uy = @im+ @, 7K i (30)
ZLOF —1-0
! m!
me1 kzlk
: k=1 R
Hy = @1m* + @y 7K k i (31)
k=ofr ~ 15
and
m-1 k32"
: k=1 1
Uz = §01m3 + (%) Ak k Am (32)

k=0T — 1 = a1

Let y1, V2,00 Yy, b€ @ random sample from £ (y; @q, @4, 1) in (7), and let,
M[ — ?21 yT%l
' Xl i
be their sample moments about the origin, then solving the following simultaneous
equations:

r=123.

m—1 kA
, Lkt RT
M; = o m+ @, K i (33)
m b 1 A
k=0 ! m!
me1 kzlk
: k=1l
M; = pm?* + ¢, K k i (34)
m A

k=0T~ 1=
and

120




TN Dded O3 pmmead b Jealod! 3ead! a0 Saelae — Bl D Lol £ U] Scalal! Dl

me1 k3lk
k=1 TRT

m A A
k=0 |1 m!

For given mand M], the ME estimators of ¢, ¢;andA can be obtained
numerically.

M = @pm? + @, (35)

6. Endpoint-Inflated Double Truncated Poisson Regression Model

In this section the endpoint-inflated double truncated Poisson regression (EIDTPR)
model is proposed to investigate the dependence of the response variable of count
data containing both extra zeros (left-endpoints) and extra right-endpoint, on a set
of explanatory variables. The regression model is based on the assumption that the
response variable has the EIDTP(¢,, ¢4, 4). However, the modeling procedures are
proposed similar to those for (GLMs), the parameters of the response distribution
are related to linear predictors through the link functions, the linear predictors
involve covariates and unknown regression parameters. The regression parameters
are interpretable in terms of the parameters of the response distribution.

Let Y; is the response variable of the ith individual, such that Y; for i =12,....,n
has the pmf in (7) with parameters ¢, = @,;, 1 = @1;, and A = A;, which satisfy
the following functional relations:

log (Z_Z) =a;a =1y, (36)

log (%) = b} B =15, (37)
and

log(A) = ¢/ vy =3 (38)
where

a=(a,....a,)) B=By,....5) and y=(yy,....7,), are vectors of unknown regression

parameters; (p +r+q<n), 1y = W11, Mn)) N0 = (a1, M2)/and 13 = (M34,...,13,)" are

predictor vectors. a; = (ay;, ..., ap;), by = (by;, ..., by), andc¢; = (cy;, ..., c,) are observations on p’ +
r' + q' known covariates, then
enli
Poi = 1+ eMi + el2i’ (39)
eﬂzi
.= 4
P 14 eMi + eNai’ ( O)
_ 1
P21 = 1+ eMi+ eh2i’
and
Ai = esi, (41)
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7. Model Estimation

In this section, the maximum likelihood estimation method is used to estimate the
parameters of the EIDTPR model.

Let y,,...,y, be arandom sample of size n drown from EIDTP(¢,, ¢1,4), with
parameters @, = @,i, ¢1 = @1; and A = A;, which satisfy the functional relations
(39),(40) and (41).

The likelihood function of the observed sample is:

L(2y) =] [0u ouen0. (42)

where

9= p,v) a=(a,....a,)) B=(,....5) and y = (yy,..., yq)' are vectors of unknown
regression parameters: (p +r + q <n),

The likelihood function of EIDTPR model is derived by substituting (7) in (42) as
follows:

L(gy)=]] ([%J[wu]

i=1

AYi
¢2y'|( m A_k_l_l_m) ' (43)
i\ Zk=0] ml

By substituting (39), (40), (41) in (43), the natural logarithm of (43) can be obtained
as follows

f(ﬁ) = Z [771i — ln(l + i + e772i)] + Z [772i — ln(l + eMi + e772i)]
{izy;=0} {ry;=m}
m
eknsi e™si
+ Z [—ln(l +eMi + eMi)+y;ns; — In(y;!) — ln( -1- >l (44)

k! m!
{i:o<yj<m } k=0

The elements of the score vector is obtained by taking the partial derivatives
of the log likelihood function (44) with respect to the unknown regression

parameters, a, f and y as follows:
The partial derivative of (44) with respect to « is given by:

, 6{7(19) eMi eMi
U ( ) Ja Z 4 (1 - 1+ eMi + eM2i ) N Z & (1 + eMi + eﬂzi)' (45)
{i:y;=0} {i:0<y;sm}

The partial derivative of (44) with respect to g is given by:

L 33(19) eMzi e'zi
0B === D bty ) D, blreren) (48)
{i:y;=m} {i:osy;<m}
The partial derivative of (44) with respect to y is given by:
kek7I3l me™13i
,_0e() _ s I
Uu,@y) = 3y Z Sl R — et | 47)
{i: 0<yl<m} 2’(:0 kl - - ml
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The score vector for a,  and y can be form as follows:

U(®) = (Ua(@), Upg(B) U, (1)) . (48)
The maximum likelihood estimators of «, 8 and y are obtained as the solution of
the nonlinear system U(8) = 0. Such estimators do not have closed form and must
be computed numerically.

The variance-covariance matrix

The observed information matrix contains the negative Hessian matrix. The
elements of the observed information matrix are obtained by taking the negative
second derivatives of the log likelihood function with respect to the unknown
parameters as follows:

2

I/ (ﬁ)]i,j = - [aﬁfaﬁj{)(ﬁ)]

i,j=123.

,
9.8,

The observed information matrix can be written as follows:

]aa ]aﬁ ]ay
J@) =\ Jsa Jeg v, (49)
]Va ]VB ]w
where
_32{7(2)_ , eMi + eM2i+N1i
aa da? __{.0 }ai (1+e711i+e712i)2’
i:0sy;sm
_32{7(2)_ , eM2i + eMit+nzi
Jop = o T L, (@ emiren?
elnai eMN3i k2eknsi  m2emusi
KON 2(275?0 Ll )( e T )
w2 T i K N\ 2
m kek773i me™si 2
. (2k=0 T T )
! k13 i\%
{i:0<y;<m} ( "rcnzo_ekn!:" - __3277!3)
_ o _0%(0) _a%(®) _ Z e
Jep = b = 3008 = apoa U0 1 i + emar)?

{i:0sy;j=m}
_ _0%(®) _9%e(9) _
Joy = Jye = dady ~ dyda
and

_0%(9) _o%(9) _

]ﬁ]/: YB — By ayop -
The variance-covariance matrix for the ML parameter estimators is the inverse of
the observed information matrix. The inverse of the observed information matrix
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can be obtained as in (24), where|J(9)is the determinant of /(9), can be obtained
as follows:

]aaf ]aﬁ 0
V@) =1 Jsa Jpg O :]yy[]aajﬁﬁ _]aﬁjﬁa]r (50)
0 0 Tyy

and adj J(9) is the adjoint of /(9), can be obtained as follows:

Jsp Jyy _( ]Ba]w) 0
COf](Q) = _(]aﬁ ]VV) ]aaf ]yy 0 ! (51)
0 0 ]aaf]ﬁﬁ _]aﬁjﬁa

The transpose of (44) can be obtained as follows:
Jsp Jyy _(]aﬁlw) 0
ad]](ﬁ) = _( ]ﬁa ]VV) ]aaf]yy 0 ! (52)
0 0 ]aa]ﬁﬁ_]aﬁjﬁa

By substituting (50) and (52) in (24), then the variance-covariance matrix can be
written as follows:

B ]aaf ]aﬁ 0
J@) =|pe g8 0 | (53)
0 o Jv
where
ca—__ JBB
]aa]ﬁﬁ _]aﬁjﬁa’
JBE = %l
]aa]ﬁﬁ _]aﬁjﬁa
]VV = i’
]VV
and
]aﬁ :]Ba — _]“B _ _]Ba

Jedpp —Japlpe  Jaalpp —JepJpa

The diagonal elements, J* of the variance-covariance matrix, J (Q)_1 in (53) are
the estimated variance of the ML estimators, (&, ,7) and the square root of the
diagonal elements of the variance-covariance matrix, are the estimated standard
errors of the ML estimators, (&, 8,7). Thus, (1 — §)100% asymptotic confidence
intervals (Cls) of @ fand 7 can be obtained as follows:

8 + 252,

9 = (&,B,7), and zg represent the 5" quantile of the N(0, 1) distribution.
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Numerical study

In this section, a simulation study is conducted to evaluate the performance of the
proposed methods. A real data set is analyzed to demonstrate how the methods can
be applied in practice.

8.1Simulation Study

A simulation study is conducted to evaluate the performance of the proposed
EIDTP(¢y, @,,4) distribution and the EIDTPR model. A simulation study is
performed for a set of initial parameter values, sample sizes and right endpoints.
For each combination of the parameter values, sample sizes and right endpoints,
the EIDTP(¢,, 4, 4) is fitted and the variance, bise?, mean square error (MSE) are
calculated using the following formulae:

bise? = (estimate of the parameter — true value of the parameter)?. (54)
MSE =variance (estimate) +bise?(estimate). (55)

The following steps are used to compute the ML estimates for EIDTP(¢@q, ¢4, 4).

1. For given values of the parameters ¢, = 0.4, ¢, =0.3 and A = 3 counts are
generated from EIDTP(¢py, ¢1,4) using (7) for different sample sizes [n
=50,100,300 and 500] and different values of the right endpoint [m=8, 13 and 20].
Obtain the ML estimates by solving (17), (18) and (19), respectively.

Compute the bise?, MSE for each estimate using (54), (55) respectively.

Repeat the above steps for all sample sizes 500 times.

The results of the simulation study are illustrated in Table 1.

It is observed from Table 1 that the bise?, and MSE decreased as n increased.

a s~ wD

Table 1: The Estimates bise?, MSE and C.1. for the Parameters for the EIDTP(¢,, ¢4, 4)

m=28 m =13 m =20
Sample Size  Parameter Estimates MSE bise? Estimates MSE bise?  Estimates MSE bise?
o 0.4031  0.0048 9.745E-06 0.3986 0.005 1.965E-06 0.4018 0.0045 3.092E-06
n=50 0, 0.3009  0.0038 7.748E-07 0.2988 0.0041 1.432E-06 0.2986 0.004 1.842E-06

A 3.2563 0.0726 0.0657 3.2579  0.0765 0.0665 3.2556  0.071 0.0653
¥ 0.4007 0.0022 5.205E-07 0.4052 0.0025 2.666E-05 0.3995 0.0025 2.701E-07

n=100 o 0.3005 0.0021 2.135E-07 0.2992 0.002 6.71E-07 0.2992  0.0021 5.735E-07
A 3.2561 0.0690 0.0656 3.2554  0.0695 0.0652 3.2572  0.0703 0.0662
o 0.4028 0.0008 8.054E-06 0.4016 0.0008 2.413E-06 0.3994  0.0008 3.080E-07

n=300 01 0.2989 0.0007 1.133E-06 0.2995 0.0007 2.485E-07 0.3001  0.0007 1.179E-08
A 3.2480 0.0645 0.0615 3.2522  0.0664 0.0636 3.2483  0.0648 0.0616
¥ 0.3980 0.0005 4.066E-06 0.4003 0.0005 9.126E-08 0.3991  0.0005 8.261E-07

n=500 01 0.3016 0.0004 2.468E-06 0.3003 0.0004 1.065E-07 0.2997  0.0004 1.087E-07
A 3.2455 0.0629 0.0603 3.2478  0.0643 0.0614 3.2485 0.0641 0.0618

The EIDTPR model is used with the function relations (36), (37) and
(38).Independent samples of size n are generated from EIDTP(¢,,¢;,4) using
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initial values ¢, = 0.4, ¢, = 0.3 and A = 3. The distribution parameters are
related to a set of explanatory variables with unknown coefficients through link
function.

The following steps are used to compute the ML estimates for the EIDTPR model
for different sample sizes [n=50,100,300 and 500] and different values of the right
endpoint [m=8, 13 and 20].

1. Three covariates are generated from U(1, 2).

2. Let the intercepta, =, =9, =0

3. The initial values of the regression coefficient are settobe a;, = g, =y, =04
4. Obtain the ML estimates by solving (45), (46) and (47), respectively.

5. Compute the bias, MSE for each estimate using (54), (55) respectively.

6. Repeat the above steps for all sample sizes 500 times.

7. The results of the simulation study are illustrated in Table 2.

It is observed from Table 2 that the bias, and MSE decreased when n increased.

Table 2: The simulation results of the MLE, MSE, bise?, and SE for the
Parameters for the EIDTPR model

m=28 m =13 m =20

Sample Size Parameter Estimates MSE SE bise? Estimates MSE SE bise? Estimates MSE SE bise?
a, 0.2045  0.1475 0.2303 0.3070 0.1877 0.1517 0.2308 0.3135 0.1917 0.1548 0.2307 0.3184

n=50 By -0.0036  0.2834 0.2404 0.4748 0.0042 0.2698 0.2387 0.4610 -0.0017 0.2831 0.2396 0.4748
" 0.6706  0.0991 0.1116 0.2939 0.6671 0.0929 0.1020 0.2867 0.6574  0.0878 0.1023 0.2776

@, 01818 0.0969 0.1587 0.2678 0.1964  0.0919 0.1597 0.2577 0.1906  0.0938 0.1596 0.2614

n=100 B -0.0257  0.2387 0.1693 0.4582 0.0075 0.2109 0.1689 0.4269 0.0041  0.2150 0.1688 0.4318
" 0.6878  0.0952 0.0783 0.2984 0.6813 0.0909 0.0732 0.2923 0.6890  0.0944 0.0723 0.2985

a 0.1861 0.0626 0.0902 0.2334 0.1820  0.0629 0.0902 0.2341 0.1872  0.0615 0.0902 0.2311

n=300 By -0.0064 0.1840 0.0969 0.4179 -0.0049 0.1831 0.0967 0.4168 -0.0079 0.1857 0.0969 0.4198
" 0.6977  0.0931 0.0456 0.3016 0.6941 0.0902 0.0418 0.2974 0.6913  0.0884 0.0419 0.2943

a 0.1796  0.0581 0.0698 0.2307 0.1836 0.0569 0.0699 0.2281 0.1887  0.0541 0.0699 0.2219

n=500 B -0.0089 0.1785 0.0748 0.4158 -0.0050 0.1759 0.0749 0.4126 0.0003  0.1707 0.0749 0.4063
" 0.6972  0.0908 0.0351 0.2993 0.6907 0.0867 0.0323 0.2926 0.6913  0.0870 0.0324 0.2932

8.2 Application

An Application using real data set is introduced to demonstrate the importance and
flexibility of the proposed methods. The performance of the distribution is assessed
using goodness of fit test and different information criteria. The chi-squared (y?)
test is applied for testing the goodness of fit of EIDTP(¢p,, ¢4,1) to the data set. -
log-likelihood, Akaike information criteria (AlIC) and Bayesian information criteria
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(BIC) are used for comparing the methods, Smaller values of- log-likelihood, AIC
and BIC indicate better models. For performing significance tests of hypothesis
about parameters in the EIDTP(¢,, ¢,,4), the Wald's statistics which has an
approximate standard normal distribution is used.

The application is carried out using a sample of 16120 individuals in working ages
(16-60 years) from 7526 family of the household income, expenditure and
consumption survey (HIECS) carried out in Egypt at 2012- 2013 is conducted. The
data set is obtained from the Central Agency for Public Mobilization and Statistics.
Egypt, Arab Rep. 2012-2013. The sample contains the number of weekly worked
days (NWWD) by 16120 individuals in the last week before the survey. The data
set contains 8899 zeros and contains 4170 six; i.e. the data set contains non-
negligible number of zeros (left —endpoint) and six (right-endpoint). Summary
statistics of the NWWD by 16120 individuals of 7526 family in Egypt in 2012 -
2013 is presented in Table 3. The bar chart and the normal Q-Q plot of the number
of the data is presented in Figures 1 and 2. It is noticed that the data contains
inflation at two points 0 and 6.

Table 3: Sample Summary Statistics of the Number of Weekly Worked Days
(NWWD) by 16120 Individuals of 7526 Family in Egypt in 2012 - 2013.

Mean Min. 1st qu. 3rd qu. Max. SD
2.39553 0.0000 0.00 6.00 6.0000 2.7370

Normal Q-Q Plot of Y

Bar Chart of Y
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Figure 2: The Number of Weekly Worked Days by 16120 Figure 3: The normal Q-Q plot of the Number of
Individuals of 7526 Family in Egypt in 2012 — Weekly Worked Days by 16120 Individuals
2013 of 7526 Family in Egypt in 2012 — 2013

The observed and fitted frequency distributions based on the MLE and ME of
the EIDTP(¢,, ¢4, ) are presented in Table 4.
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Table 4: Observed and Fitted Frequency Distributions of the Number of Days
Worked by 16120 Individuals of 7526 Family in Egypt in 2012 - 2013.

Observed Frequency Number of days worked by an individual
0 1 2 3 4 5 6
8899 54 89 307 562 2039 4170
MLE  EIDTP(@q, ¢1,4) 8899 14 81 301 634 2021 4170
ME EIDTP(¢@,, 91, 1) 8925 14 73 234 629 2000 4244

Point estimates with the corresponding standard errors and confidence intervals for
the parameters of EIDTP(¢,, 1, A) using the data set of the number of days worked
by 16120 individuals of 7526 family in Egypt in 2012 — 2013, are summarized in
Table 5.

Table 5: The Parameters Estimates and the Corresponding Standard Errors
for the EIDTP (g, @1, A) Using the Data Set of the Number of Weekly
Worked Days By 16120 Individuals of 7526 Family in Egypt in 2012 —
2013

MLE ME

Point Std. Error  Interval Point Std. Error Interval

X 11.4493 0.2607 (10.938,11.9602)  11.4569 0.2610  (10.945, 11.9685)

@, 05520  0.0032 (0.5458, 0.5582) 0.5537  0.0030  (0.5479, 0.5594)
EIDTP(@,, ¢,,1) ¢;  0.2587  0.0032 (0.2525, 0.2649) 0.2633  0.001 (0.2617, 0.2649)

E(Y) 2.3955 2.3955

V() 7.4523 7.4911

The estimated variance of the random variable Y~EIDTP(¢,, ¢,,A) reflect the
variation of the data which has more frequencies for some observations [namely
zero counts and six counts]. Unlike the Poisson distribution where the mean and
variance are equal, the EIDTP(¢,, ¢,,4) can model data where mean and variance
have different values.

The results of 2, - log-likelihood, AIC and BIC are summarized in Table 6.
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Table 6: Validation of the EIDTP(¢,, ¢1,4) to the Data Set of the Number of
Weekly Worked Days by 16120 Individuals of 7526 Family in Egypt in

2012 - 2013.

Expected frequencies

MLE ME
X2 128.371 154.6395
df 3 3
p-value <.00001 <.00001
-Log-Likelihood  8296.73 8297.75
AIC 16599.46 16601.51
BIC 16606.08 16608.13

An application using a sample of 9874 individuals of the data set of the HIECS
carried out in Egypt at 2012- 2013 is conducted. The data are obtained from the
Central Agency for Public Mobilization and statistics.

The present application introduces a study of the effect of some explanatory
variables, which are the age, average number of working hours per day (ANWHD)
and average daily income per capita (ADIC), on the response variable Y, which is
the NWWD. Outliers are detected according to ADIC, so the sample size became
9288 individuals.

Table 7 presents summary statistics of the NWWD by 9288 individuals and three
quantitative random variables which are the age, the ANWHD and the ADIC that
are assumed to affect the NWWD.

Table 7: Sample Summary Statistics of the NWWD, the age, the ANWHD and
the ADIC for 9288 individuals in Egypt in 2012 - 2013.

Variable Min. 1st qu. Mean Median 3rd qu. Max.
NWWD 0.000 0.000 2.286 0.000 5.000 6.000

age 16.00 22.00 3303 30.00 44.00 60.00
ANWHD 0.000 0.000 3.474 3.000 8.000 24.000
ADIC 3.353 18.904 27.453 25.233 34.249 62.466

The bar chart of the NWWD by 9288 individuals, the histograms of the age, the
ANWHD and ADIC for 9288 individuals in Egypt in 2012 — 2013 are presented in
Figures 3, 4, 5 and 6 respectively.
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Figure 3: The Number of Days Worked by 9288 Figure 4: The Age of 9288 Individuals in Egypt in
Individuals in Egypt in 2012 — 2013 2012 -2013

Histogram of ADIC
900

Histogram of anwhd 800
6000 700
5000 600

4000 500
&

Frequency

c 400
S 3000

300
2000

200
1000 100
o lem

ADIC

Figure 5: The Average Number of Working Hours Figure 6: Average Daily Income per Capita
Per Day (ANWHD) for 9288 Individuals (ADIC) for 9288 Individuals in Egypt in
in Egypt in 2012 - 2013 2012 - 2013

It is noticed from Figure 3 that the data contains inflation at two points 0 and 6, such
that the frequency of zero is 5297 and the frequency of 6 is 2295. The endpoint
inflated Poisson regression model using the functional relations (36), (37) and (38)
can be used, assumed that intercepts are set to be zero. The parameter estimates and
the corresponding standard errors for the EIPR model are summarized in Table 8.
Table 8: The parameter estimates of the EIDTPR model

Parameter Estimate Standard Error t-value P-value ‘
a 0.03863 0.00077 49.99 2e — 16
B 0.24183 0.00497 48.7 2e — 16
y 0.09025 000127 70.83 2e —16

It is noticed from Table 8 that age has a positive effect on the proportion of zero in
the number of weekly worked days by the individuals. It means that as the age
increase, the number of days worked by the individuals are set to be zero day. The
average number of working hours per day (ANWHD) has a positive effect on the
proportion of m in the number of weekly worked days by the individuals. It means
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that as the average number of working hours per day increase, the number of days
worked by the individuals are set to be six days. The average daily income per capita
(ADIC) has a positive effect that the number of days worked by the individuals rang
between one and five days. It means that as the average daily income per capita
increase, the number of days worked by the individuals rang between one and five
days.

8. Conclusions

EIDTP(¢,, ¢4,A) distribution is suggested for modeling data consisting of inflated
counts of zeros and inflated counts of m, assuming all zeros and m are from one
structural source rather than two sources (both structural and sampling). The
distributional properties and two parameters estimation methods, maximum
likelihood and method of moments are considered. The method of maximum
likelihood estimators is shown to have better estimates on the real data set.
The EIDTPR model is suggested to investigate the dependence of the response
variable of count data containing both extra zeros (left-endpoints) and extra right-
endpoint, on a set of explanatory variables. A simulation study is conducted to
evaluate the performance of the proposed methods. A real data set is analyzed to
demonstrate how the methods can be applied in practice. The numerical study is
carried out using R program, version 4.1.2.
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