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Abstract

In this paper, a new family of discrete alpha power distributions is
introduced. Some properties including quantiles, mean residual life,
mean time to failure, Rényi entropy, moments and order statistics are

obtained. Discrete alpha power Weibull distribution, as a member from
this family, is studied in detail. Discrete two-parameter Weibull
distribution, discrete alpha power one parameter Weibull distribution,
discrete alpha power exponential distribution, discrete one parameter
Weibull distribution, discrete Rayleigh distribution, discrete
exponential distribution, discrete alpha power Rayleigh distribution are
sub models of discrete alpha power Weibull distribution. A simulation
study is conducted to investigate the precision of the theoretical results
based on simulated and real data through some measurements of
accuracy. Three real data sets are analyzed to illustrate the suitability
and applicability of the proposed model.

Keywords: Alpha power transformation; Discrete distributions;
Discrete alpha power family of distributions; Weibull distribution;
Maximum likelihood estimation.

1. Introduction

Generalization for classical distributions has received much
attention in recent years by many authors to let the extended
distributions more flexible for modeling real data. In practice the
motivations for obtaining generalized family are: (a) to make the
kurtosis more flexible as compared to the baseline model, (b) to
produce skewness for symmetrical distributions, (c) to construct
heavy-tailed distributions that are not longer-tailed for modeling real
data, (d) to generate distributions with symmetric, left-skewed, right-
skewed and reversed-J shaped, (e) to provide consistently better fits
than other generated models under the same underlying distribution.
[See Eliwa et al. (2020)].
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In the literature, several methods of generating new family of
statistical distributions were presented; for example, Marshall and
Olkin (1997), Eugene et al. (2002), Cordeiro and Castro (2011),
Alzaatreh et al. (2013), Lee et al. (2013) and Jones (2015).

Mahdavi and Kundu (2017) presented a method to add an extra
parameter to a family of distributions, such an addition of parameters
makes the resulting distribution richer and more flexible for modeling
data. The suggested method is called alpha power transformation
(APT) and it is useful to incorporate skewness to a family of
distributions. The APT method was applied to many distributions by
many researchers, such as Nassar et al. (2017), Dey et al. (2017),
Nadarajah and Okorie (2018), Mead et al. (2019) and Nassar et al.
(2020).

Let F(x) is the cumulative distribution function (cdf) and the APT of

F(x)forxe Ris

RFI:I} -1
] = D.! 1!
Gpr(ta) =1 g-1 . “® (1)
F(x), a=1,

and the corresponding probability density function (pdf) is
loga

HApr(xi E;::] =sa—1

f{xjcrp':x}, a=0 a+l,

where a is the shape parameter.
The survival function (sf); 5.5 (x; &), is given by

santey = [5G, a0 aen
1— F(x), a=1,

(3)

In reliability lifetime modeling, it is common to deal with failure
data as continuous but practically; failures can happen and are
observed in a discrete procedure. Some well-known discrete
distributions have limited applicability to model discrete failure times.
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Therefore, it is realistic and suitable to generate discrete lifetime
distribution from the base continuous distribution keeping one or more
important characters of the continuous distribution. [For more details
see, Lai (2013) and Chakraborty and Chakravorty (2016)]. Although
there are several methods where discrete analogue random variable of
a continuous random variable may be obtained, the general approach
of discretization of some known continuous distributions have been
attracting great concern for use as lifetime distributions [see,
Nakagawa and Osaki (1975), Khan et al. (1989), Bracquemond and
Gaudoin (2003), Inusah and Kozubowski (2006), Krishna and Pundir
(2009), Jazi et al. (2010), Gomez-Deniz and Calderin-Ojeda (2011)
and Nekoukhou et al. (2012) and Chakraborty (2015) ].

The rest of this paper is organized as follows: in Section 2, a
discrete alpha power (DAP) family of distributions based on the
method of APT is introduced and some of its properties are studied. In
Section 3, some members of the discrete family of distributions are
presented. Maximum likelihood (ML) estimation for the parameters of
the distribution is discussed in Section 4. In Section 5, real data set is
analyzed to demonstrate how the results can be used in practice.
Finally, concluding remarks are given in Section 6.

2. Discrete Alpha Power Family of Distributions: Construction
and Properties
In this section, DAP family of distributions is constructed using the
general approach of discretizing, where the advantage of this method is
that the sf for the discrete distributions has the same functional form of
the sf for the continuous distributions. Hence many reliability and
properties keep on unchanged [see, Roy (2003, 2004)].

2.1 Discrete Alpha Power family of distributions
If the continuous random variable X has the sf, 5(x) = P(X = x)

then the probability mass function (pmf) of the discrete X (dX) is given

by
P(dX=x)=P(x)=P[x <X < x +1]

=5(x)—S(x+ 1), x=0,12,... (4)
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Considering X is a discrete random variable analogue to a
continuous random variable. From (3) and (4), the pmf and cdf for
DAP family are given, respectively, by
PDAP[xj = PDAP(J‘? a) = SDAP[:xj - SDAP(x +1)

— (a _ 1:]—1[a£‘|:x+1} _ aFl:x:') L, x=012.. :a=1, (5)
and
Foap(ma) = Poap(X¥ = x) =1 - Spp(x) + Ppap(X=x)
I,_?:Fl.::+'_1_:|_
=0 x= 012. :a¢=1. (6)

2.2 Some properties

1. Survival and hazard rate functions

The sf and the corresponding hazard rate function (hrf) are given
below

Spap(x) = Ppap(X = x) =1 - Fpp(x) + Ppap(X = x)

_ i 1-af@ 1), x=012.;a%1, (7)
and

Ppapln) _ (¥
hoap (@) = 240 = gy %= 012, @l (8)

2. Reversed and alternative hazard rate function
The reversed hazard rate function (rhrf) which is known by the
dual of the hrf; describes the probability of an immediate past failure,
given that the unit has already failed at time x. The rhrf is given by
] PII'AP'I:' B I:E:F'.x+'_1_ﬁ_,F'.::J:| J

rh x = T
.DAP( FDAPII} E.F'.n+:|_1

x=012... ;a+1. (9)

The discrete hrf has some notable problems. Therefore, Roy and
Gupta (1992) provided an excellent alternative definition of a discrete
hrf; alternative hazard rate function (ahrf); ah(x). The hrf and ahrf

have the same monotonic property, i.e., ahrf is increasing (decreasing)
if and only if hrf is increasing (decreasing). [For more details see, Xie
et al. (2002) and Lai (2013, 2014)].

The alternative hrf is

_ DAP (x)
ahpup(xa) = In [ 1]]

DAP[x ‘|‘
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The relationship between ahy, . (x) and k- (x) can be expressed by

hpap (x: @) = 1 — e~2hpar(x)

=1— e‘[!n[l—rx‘w"ﬂ_:]—m':1"1Fl'x+ﬂ_::|] . (11)

3. Quantile function
The pth quantile function, say x,, is

xp=F_1[mg[t:;$]—1,a¢1, (12)

where p € (0,1), x, >0 and F~represents the base line of quantile
function.

Special quantiles may be obtained using (12). For example, if p = 0.5,
the median of the DAP distribution is

Median = F~! [M] L
log(a)

4. Mean residual life

The mean residual life (MRL) is the expected remaining life, X — x,,
given that the item has survived to time x, [see, Kemp (2004)]. It is
denoted by m(x,) and is defined by

oo ¢ oo r [Rl—2
E?f:::,:.+'_ Spap (k) _ E?c:.::,;.+'_|--:|'_ o’ :I

El_ﬁ_,Fl.xDJ—'_:l ' (13)

m Ex I}j = Spap (x D}

5. Mean time between failures and mean time to failure

Mean Time to Failure (MTTF) is the average time between non-
repairable failures and is generally used for items that cannot be
repaired, such a light bulb or a backup tape. The average time for a
device or system is expected to function before it fails. It predicts the
failure rate for products that cannot be repaired.

The MTTF is given as follows:

o

MTTF =X, Spp() =22, —(1—-a1), t=0; az1. (14)

=1 p1
The Mean Time between Failure (MTBF) is used with items that can
be either repaired or replaced and is given bellow
13

_r —
MTEF = — = - , t=0; 1. 15
loglSpap ()] mg[[ﬁ}il—g -2y “* (15)

The Availability (4v) is considered as being the probability that the
component is successful at time x, i.e.,

o N\
C 162 )




TV Ay D pmadly Sl 3oadl sy Bavels — By Ll O Llss £ UaBY Falall Almtl

Av =T (16)
MTEF

It's important for organizations to be aware of the difference between
the three previous concepts, so they don't waste time focusing on how
long it takes to repair a system when the best option could be to replace
it with a new one.
6. Reényi entropy

An entropy of a random variable X with the pdf P(x), is a measure of
variation of the uncertainty and it is denoted by Hx(g). It has been
applied in a wide variety of fields such as statistical thermodynamics,
urban and regional planning, business, economics, finance, operations
research, queueing theory, spectral analysis, image reconstruction,
biology and manufacturing. It is defined by

He(p) = (1—p)tlog [z [Pﬂﬂtxj)p{
w0 EF':x+£l_ﬁ:F':x3

ax—1

=(1—p]'1iog{ f:u{ ]p},a?t 1p=0,p#1.(17)

The Shannon entropy can be defined by E[—log(P,»(x))], and it can
be calculated as a special case of the Rényi entropy when g — 1.

7. Non-central and central moments
The non-central moments are obtained as follows:

p = E(XT) = Ei-gx" Ppaplx) (18)
u, = Ef:c.xr [(a_ 1]—1(a£"::r+1} _ ﬂ:f":x})]’

x=012.;a+1r =1,2,... (19)
In particular, the mean is given by
gy =p=2Xx [(a - 1]'1(rx*r':"‘+ﬂI - aF':x:')], = 012..; a+1 (20)

8. Order statistic
Let F,p4p (x); the cdf of the i order statistic for a random sample

XX, ...X,, is given by

Fipar () = Ziei () [Foap (] [1= Fpgp (1" (21)
Using the binomial expansion for [1 — Fy, 4 (x)]™®" and substituting (6)
in (21),
where
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Fo@ =y (") Fmﬂﬂlz;u ;) CD @V

== [n] f;é.“(n : [“FM ] = 012..; a+1.(22)

T
Special cases
Case I: If i =1 in (22) one can obtain the distribution function of the

first order statistic, as given below
Fipap(x) =1 —[1— Fpup (x)]7

S (23)

Case IlI: If i=mn in (22) the distribution function of the largest order
statistic is as follows:
Fopap(x) = [Fpap (x)]”

_ [Eﬁlixw_ﬁ_l]” | (24)

-1
Suppose that X,.X,,..,X, is a random sample from the DAP
distribution. Let X, X,.,....X,, denote the corresponding order
statistics. [see Arnold et al. (2008)]. Then, the pmf of X, is defined
by
Ppap(X,, = x) = m f;fl;'ilfl} v (1 — v)" dv.
(25)

Using the binomial expansion for (1 — )%, then, the pmf in (25) is

P =0 = B2 (M) (0 &)

1o

oF Cera)_ it+j LF_ itj
xl( — 1) —( E_ll) ],rx¢ 1. (26)
The pmf of the smallest order statistic is obtained by substituting i = 1
in (24) as given below

Poap(Xy = %) =[1— P ()" — [1 — Fpap(x+ 1)]%, a#1, (27)
and, the pmf of the largest order statistic is obtained by substituting
i =n in (24) as follows:

Ppap(Xpm = %) = [Fpap(x+ 1)]" = [Fpgp ()", a =+ 1. (28)
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Also, one can use (22) to obtain the pmf of the DAP distribution, [see
Arnold et al. (2008)].
3. Some Members of Discrete Family of Distributions
In this section the DAP transformation (DAPT) method is applied
to a specific class of distribution functions such as exponential,
uniform and Weibull distributions.
3.1 Discrete alpha power
exponential distribution
The cdf and sf of the exponential distribution with parameter 4 are,
respectively,
Fly;A)=1—e™, y=0;1>0,
and
S(viA)=1—-F(x;A) =e™, y>0;1>0.

Let e *=p, , 0<p, <1,

Using (5)-(7), the pmf, cdf and sf of the two-parameter DAP
exponential distribution are, respectively, given by

o _ ¥+ _¥
Poaps(") = Poaps(vi @A) === (a7 —aP), y= 012..; a#1, (29)

R “
Fpape(¥) = %; y=012..; a#1l, (30)
and
Spars =(5)(1-a), y= 012.. ; ax1, (31)

Note that: If « =1, the distribution with pmf (29) reduces to the

discrete exponential distribution.
3.2 Discrete alpha power uniform distribution
Assuming that ¥ has uniform distribution with parameter a. Then the

cdf and sf of ¥ are, respectively,

F(y;a) ==, y<a;a=0,

i R

and
v
SA)=1-F(yna)=1-=, y<a; a=0.
o

Hence, the pmf, cdf and sf of the discrete alpha power uniform
distribution using (5)-(7) are, respectively, given by

e N\
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Ppapy(¥) = Ppaps(vi . 1) = (@ — 1:]_1(“(}-“};& —a¥/ )r y=0,..,a; a#l,
(32)

E:j_].'+'_j.r'|1_1

FDAPU[}F:] = » y= ﬂ,...,ﬂ, H 1; (33)

and
Spars() = (=) (1 —a¥®%), y=012..a; a%1, (34)
Note that: If @ =1, the distribution with pmf in (32) reduces to a

discrete uniform distribution.
4. Discrete Alpha Power Weibull Distribution

x—1

The cdf and sf of the Weibull distribution with scale parameter 4 and
shape parameter @ are
Fly; L) =1—e " y=0; LB>0,

and
5[}?:‘1,,3]=e"13’"g, y=0; LB =0.
Let e*=p, , 0<p,<1.

Then, the pmf and cdf of the discrete alpha power Weibull distribution
using (5)-(7) are, respectively, given by

¥ ‘_"l'g -F
Ppapw (¥) = Ppapw Vi, 4) = (L)(ﬁ_mﬂ- —a P ):}’ =012.;8>=0, a+1,

x—1
(35)
and
‘__“[}1_'_‘_:'3
Fpapw (7) =%_1_1, y=012..;8=0 a+1 (36)

4.1 Survival, hazard, alternative and reversed hazard rate
functions of discrete alpha power Weibull distribution
The sf, hrf, ahrf and rhrf are

Spapw () = (i)(l - ﬂ_ﬂiﬂg): ¥y

x—1

012..; =0, a1, (37)

I[' ¥+ ‘_J'B ,,}"5 )

] —a 2

hpapw () =— 7B -, ¥y=1012..; >0, a+1 (38)
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, ¥=012. ;=0 a#1 (39

and

rhyapw(¥) = - y=012..; =0 a#1, (40)
4.2 Some sub-models of the discrete alpha power Weibull
distribution

Some important special sub-models of the DAPW distribution are
given in Table 1.

Table 1. Sub-models of the DAPW distribution

A
“ B Model

1 —  — | Discrete two parameter Weibull distribution

_ 1 _ Discrete alpha power one parameter Weibull
distribution

Discrete alpha power exponential distribution

Discrete one parameter Weibull distribution

1 - 2 | Discrete Rayleigh distribution

1 - 1 | Discrete exponential distribution

- - 2 | Discrete alpha power Rayleigh distribution

4.3 Graphical description

Figure 1 displays some plots of pmf of DAPW for selected parameter
values. Plots of the hrf are given in Figure 2 and ahrf plots of the
DAPW distribution for selected parameter values are presented in
Figure 3.

Figure 1 shows that the pmf of DAPW distribution can be unimodel
and right skewed according to the selected values of the parameters.
For some values of parameters, the pmf is decreasing over (0,«) and

o N\
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the mode is at zero. While for other values of the parameters, it
indicates that the pmf is increasing on (0,x,,,:.) and reaches the

maximum at x,,..., then decreases to the zero. Plots of pmf, hrf and

ahrf show that the DAPW distribution exhibits a long right tail
compared with other commonly used distributions. Thus, it will affect
long term reliability predictions, producing optimistic predictions of
rare events occurring in the right tail of the distribution compared with
other distributions. Also, the DAPW distribution provides a good fit to
several data in literature.

Figures 2 and 3 indicate that although the hrf and ahrf of DAPW
distribution are decreasing, increasing and upside-down bathtub shapes
depending on the value of the shape parameters, the hrf is less than 1.

2V a=0.5 20 a=5
' A 1: 1 - ‘1: ].
0.0 ’ 4 -
o p=0.5 3 p=0.3
0.2} 1 T-_
- _ _ y -
0 2 4 o 8 0 2 4 6 8 7
2y
0.6 a=10
051 — A=
0.4} p=1.5
0.3
0.2
0.1 [ ]

0 2 4 6 8
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Figure 1. Plots of the probability mass

function of DAPW
for selected parameter values
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Figure 2. Plots of the hazard rate function of DAPW

for selected parameter values
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Figure 3. Plots of the alternative hazard rate function of DAPW
for selected parameter values
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4.4 Quantile function
The p-th quantile y, of F,,py (), for & # 1, can be obtained as

loglla— 1/B
log [1—(MJ]} ~1, 0<p<1,

y, = {—
B logipg)

log(a)
P, = e t0< p, <1, (41)
Hence, the median can be obtained as follows:
_ (1 _ (1oglla-Do5+1] ]}”E _
Yos = {!Dg':?.ﬂ:.;' lﬂg [1 ( logia) ) L. (42)

4.5 Mean, variance, skewness, and kurtosis
The mean (x) of DAPW (a,p,, £) distribution is given by

(¥+1 £ B
p=Xi=0y [(cx— 1)‘1(cx1‘?’f " gt )] y=012... (43)
and the variance is

a1l ]
@7t (a - ) <[5z

¥+ lj'E

py = BrooX? (@ — 1)1 (ﬂfl_pf

(44)

The skewness and kurtosis of the DAPW (&, p,, ) distribution are given,

respectively, by

a; = #—; and a,= %2 where p,=EX-—-p)", r=12..,, (45
T :

The mean, median, variance, skewness and Kkurtosis of a

DAPW (a,p,, 8) distribution for different values of a,p, andf are

calculated numerically in Table 2 using (42) - (45). From Table 2, one
can observe that depending on the values of the parameters, the mean
of the distribution can be smaller or greater than the variance. Hence
DAPW distribution models are appropriate for modeling both over and
under dispersed data.
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Table 2. The mean, median, variance, skewness and kurtosis of

DAPW(a,p, = e, )

for different values of the parameters

e, A, B . . .
Mean | Median | Variance | Skewness | Kurtosis
5 05 05 130282 | 5.0000 | 554.4120 | 5.1031 | 53.5341
1 2.3624 | 2.0000 | 5.3734 1.5483 | 6.6486
1.5 1.3702 | 1.0000 | 1.1600 0.7198 | 3.5277
3 1 0.5 | 29626 | 1.0000 | 34.1988 | 5.1760 | 54.6764
1 0.9571 | 1.0000 | 1.3291 1.6127 | 6.7605
1.5 0.6838 | 1.0000 | 0.4917 0.7588 | 3.2931
5 2 0.5 | 05306 | 0.0000 | 1.9521 5.6708 | 62.9851
1 0.2867 | 0.0000 | 0.3019 2.0609 | 7.9757
1.5 0.2517 | 0.0000 | 0.2026 1.3806 | 3.5556
10 0.5 0.5
1 15.6160 | 7.0000 | 661.1840 | 4.9609 | 45.8728
L5 2.7187 | 2.0000 | 5.8082 1.4095 | 6.1198
' 1.5447 | 1.0000 | 1.1822 0.6180 | 3.4339
10 1 0.5
1 3.5877 | 1.0000 | 140.938 | 4.7400 | 46.5684
15 1.1256 | 1.0000 | 1.4588 1.4379 | 6.1003
' 0.7911 | 0.0000 | 0.5097 0.6069 | 3.1920
10 2 05
1 0.6569 | 0.0000 | 2.3782 5.1150 | 52.2084
L5 0.3506 | 0.0000 | 0.3510 1.7644 6.608
' 0.3064 | 0.0000 | 0.2306 1.0871 | 2.8132
4.6 Mean residual life
The MRL of DAPW(a,p,, )
L
E?:x:&*_(l_‘z_pz J
m[}:'[,] = ; -5 4 (46)

Yo
1-a Fz )

)
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4.7 Order statistics

From (22), the cdf of the i" order statistic for a random sample
r+j

L +nf
FEBAPLV(}’:]:EL;'{T;) _{ : )( 1]‘11—_1 '

(47)
From (27) and (28)
The pmf of the first order statistic

Fpapw [Yim =y)

=012.; a#l.

b=

The pmf of the largest order statistic

n

A |_'!.+_"|'g I_'!.”'Hg
P(Yon =) [E - ] IE - _] ¥y =012.; a®1l. (49)

5. Maximum Likelihood Estimation

This section is devoted to estimate the wvector of
parameters,f=(cx,p2,,€j, sf, hrf and ahrf of the DAPW(E)

distribution, also confidence intervals of the parameters a,p,, 8, sf, hrf

and ahrf are derived.
Suppose that ¥;,¥;, ..., ¥, is a sample of size n obtained from a life-test

whose lifetimes have a DAPW (g) distribution. Then, the likelihood
function is
L (E:EJ o< {ITi=y (v )} [5G )]

(50)
Substituting (35) and (37) in (50). Hence

(o) (2 (e [ =) e

The ML estimator of ¢ = (a,p,,f) are obtained by maximizing the

logarithm of the likelihood function, denoted by £ which can be written
in the form:
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g

r o wi+2P _t i
[T, GE) (e - )]Hn_ﬂm(a_l)(l_

g

r s : 2
= Z In {ai 1) (fx_?’;.}ltjs — a:_?’}zl ) +(n—r)in (ai 1)(1 — a:_?’im)
i=1

r [ ‘|:+‘__'E }'[S ¥
=ﬂiﬂ,( ‘ }—i—Z lﬂ(cx‘?’f ’ —a Pz )—i—[n—r]iﬂ(l—a‘%
oa—1 i=1

The ML estimators can be obtained setting the partial first derivatives
of £ with respect to «, p, and f8, respectively, to zeros. The system of

non-linear equations can be solved numerically using the Newton-
Raphson method, to obtain the ML estimators &,#, and 2. The ML

estimators &,#, and § have an asymptotic variance-covariance matrix

defined by inverting the information matrix.

Also, the ML estimators of the sf, hrf and ahrf can be derived using the
invariance property of the ML estimators based on (37)-(39),
respectively.

The asymptotic variance-covariance matrix of the estimators
&, p, and § are obtained depending on the inverse asymptotic Fisher

information matrix I using the second derivatives of the logarithm of
the likelihood function.

The asymptotic Fisher information matrix can be written as follows:

aé
do;p;
where @, = a,@, =p, and @, =f.

I~—

] ’ I'.r_.i' = 1: 2.- 3r
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6. Numerical Illustration

This section aims to investigate the precision of the theoretical
results based on simulated and real data through some measurements
of accuracy; to study the precision and variation of the ML estimates.

6.1 Simulation

In this subsection, a simulation study is conducted to illustrate the
performance of the presented ML estimates based on generated data
from the DAPW distribution. The ML averages of the parameters, sf,
hrf and ahrf based on complete sample and Type Il censoring are
computed. Moreover, credible intervals of the parameters, sf, hrf and
ahrf are calculated. The simulation study is performed using
Mathematica 9.

Table 3 shows the averages, relative absolute biases (RABS),
Relative errors (RESs), variances, sf, hrf and ahrf estimates, also 95%
confidence intervals where the initial values for the parameters are
a=5,1=13, £ = 05 under two levels of ix 100 percentage of

uncensored observations Type Il censoring 80% and 100%. Table 4
and 5 displays the same computational results under complete sample,
but for different true parameter values from the DAPW distribution for
different samples of size where (n=50 and 100) and number of
replications, NR = 1000.

The RABs, REs, ERs and variances of the ML estimates of the
parameters, sf, hrf and ahrf are computed as follows:

x N:R estimates

1) Averages = ==————

2) ABs (estimate) = 2= (esimate)l.
true value
3) Es :M

true valus '’

4) Variances (estimate) = ER(estimate) — bias® (estimate),
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Table 3. ML averages, relative absolute biases, relative errors, variances of ML estimates, 95%confidence intervals of the
parameters from DAPW distribution for different sample sizes n, censoring sizer, ¥y, = 1

and the number of replications NR= 1000 (& =5, 4 = —logp, = 1.3, § = 0.5)

n r Parameters | Averages | RABs REs Variances UL LL Length
“ 5.1587 0.0318 | 0.0438 | 0.0225 5.4526 | 4.8649 | 0.5877
A 1.0710 0.2860 | 0.4544 | 0.2806 2.1091 | 0.0328 | 2.0763
100 | B 0.6462 0.2924 | 04502 | 0.0293 0.9817 | 0.3107 | 0.6710
80 | R(v,) 0.6789 0.2713 | 0.3880 | 0.0219 09692 | 0.3886 | 0.5806
h(y,) 0.3749 0.2035 | 04272 | 0.0313 0.7215 | 0.0284 | 0.6931
ah () 0.4997 0.2146 | 04155 | 0.0512 0.9433 | 0.0560 | 0.8873

100 -
5.0734 0.0146 | 0.0255 | 0.0109 5.2781 | 4.8688 | 0.4092
A 1.2933 0.1378 | 0.2028 | 0.0498 1.7308 | 0.8557 | 0.8751
100 | £ 0.5596 0.1192 | p.1780 | 0.0043 0.6891 | 0.4300 | 0.2590
100 | R(v,) 0.6087 0.1399 | 0.1871 0.0044 0.7388 | 0.4786 | 0.2601
h(y,) 0.4355 0.0748 | 0.1723 | 0.0054 0.5776 | 0.2932 | 0.2844
ah (v,) 0.5773 0.0926 |0.1763 | 0.0092 0.76377 | 0.3907 | 0.3730
* 5.1192 0.0238 | 0.0361 | 0.0185 5.3859 | 4.8526 | 0.5332
A 1.1281 0.2479 | 04164 | 0.2519 21119 | 0.1443 | 1.9675
200 | B 0.6343 0.2687 | 04128 | 0.0245 0.9415 | 0.3272 | 0.6143
160 | R(y,) 0.6622 0.2401 | 0.3578 0.0200 0.9398 0.3846 | 0.5552
h(y,) 0.3945 0.1618 | 0.3852 | 0.0270 0.7170 | 0.0719 | 0.6450
ah (v,) 0.5285 0.1691 | 0.3759 | 0.0456 0.9472 | 0.1098 | 0.8373

200 -
5.0737 0.0138 | 0.0220 | 0.0072 5.2367 | 4.9022 | 0.3345
A 1.2817 0.1363 | 0.2017 | 0.0497 1.7326 | 0.8582 | 0.8744
200 | B 0.5618 0.1159 | 0.1723 | 0.0040 0.6829 | 0.4329 |p.2499
200 | R(y,) 0.6118 0.1379 | 0.1852 | 0.0043 0.7371 | 0.4781 | 0.2589
h(y,) 0.4311 0.0747 |0.1713 | 0.0053 0.5787 | 0.2922 | 0.2865
ah () 0.5716 0.0923 |0.1759 | 0.0091 0.7647 | 0.3900 | 0.3747
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Table 4. ML averages, relative absolute biases, relative errors, variances of ML estimates, 95%confidence
intervals of the parameters from DAPW distribution for sample sizes n=50, for different values of the
parameters, ¥, = 1 and the number of replications NR= 1000

n r Parameters | Averages | RABs REs Variances UL LL Length
@ 0.4943 0.0115 | 0.0346 0.0003 0.5262 0.4623 | 0.0638
@ = 0.5 A 09711 0.0289 | 0.0803 | 0.0056 1.1181 | 0.8242 | 0.2939
i=1 B 0.5090 0.0181 | 0.0491 0.0005 05537 04643 | 0.0894
N0 1 g=05 | R(y,) 0.4189 |0.0282 | 0.0770 | 0.0009 0.4762 | 03617 | 0.1144
h(y,) 0.4424 0.0071 | 0.0199 | 0.0001 0.4587 | 0.4261 | 0.0326
ah {}’u] 0.5842 0.0095 | 0.0266 0.0002 0.6130 0.5555 | 0.0575
“ 0.7022 0.4045 | 0.5207 0.0269 1.0236 0.3809 | 0.6427
@ = 0.5 A 1.2908 0.2908 | 0.3536 | 0.0404 1.6848 | 0.8970 | 0.7878
i=1 B 1.2806 0.3260 | 04170 0.2442 2.2491 03122 | 1.9369
NV lg=19 [ R(y) 0.5353 | 0.2344 | 03051 | 0.0186 0.8030 |0.2677 | 0.5353
h(y,) 0.7760 0.1192 | 0.2044 | 0.0214 1.0628 | 0.4893 | 0.5735
ah {}’u] 1.6588 0.2209 | 0.3322 0.2791 2.6942 0.6235 | 2.0707
@ 1.4877 0.0340 | 0.0524 0.0038 1.6081 1.3673 | 0.2409
@ =1.5 A 0.5946 0.1054 | 0.1308 0.0060 1.0465 0.7427 | 0.3038
A=1 B 0.5425 0.0851 | 01235 0.0020 0.6303 0.4547 | 0.1756
50 =05 | R(y,) 0.4581 0.0938 | 0.1268 0.0013 0.5282 | 0.3880 | 0.1402
h(}’u] 0.3155 0.0186 | 0.0287 0.00005 0.3293 0.3018 | 0.0275
ah {}’u] 0.3791 0.0225 | 0.0346 0.0001 0.3992 0.3591 | 0.0400
“ 3.1327 0.0442 | 0.1239 0.1204 3.8130 24525 | 1.3605
g=73 A 0.5415 0.1585 | 0.2003 0.0150 1.0818 0.6013 | 0.4806
i=1 B 0.5788 0.1577 | 0.2395 0.0081 0.7556 0.4021 | 0.3535
0 1p-0s R(y,) 0.5715 | 0.1460 | 0.1970 | 0.0044 0.7009 | 0.4421 | 0.2587
h(v,) 0.2803 0.0498 | 0.0746 | 0.0003 03124 | 0.2482 | 0.0642
ah {}’u] 0.3291 0.0583 | 0.0859 0.0005 03724 0.2859 | 0.0865
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Table 5.
ML averages, relative absolute biases, relative errors, variances of ML estimates, 95%confidence
intervals of the parameters from DAPW distribution for sample sizes n =100,
for different values of the parameters, ¥, = 1 and the number of replications NR= 1000

n r Parameters | Averages RABs REs UL LL Length
o

i 0.4977 0.0047 0.0210 0.5178 0.4775 0.0402

a=05|p 0.9891 0.0109 0.0490 1.0828 0.8954 0.1874

10 | 4=1 0.5032 0.0065 0.0290 0.5310 0.4754 0.0555

0 |£=05 R(yo) 0.4117 0.0105 0.0471 0.4483 0.3751 0.0733

h(,) 0.4443 0.0029 0.0130 0.4553 0.4333 0.0221

ah () 0.5876 0.0038 0.0172 0.6070 0.5681 0.0389

“ 0.6829 0.3658 04742 0.9786 03871 0.5914

a=054 1.2730 0.2730 0.3368 1.6595 0.8865 0.7729

10 | A=1 | F 1.3409 0.2943 0.3772 2.21985 | 04618 1.7579

0 |8=19] R(y,) 0.5512 02118 0.2794 0.8009 0.3014 0.4995

h(y,) 0.7959 0.0967 0.1769 1.0519 0.5399 0.5119

ah (y,) 1.7262 0.1893 0.2908 2.6473 0.8049 1.8424
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14818 | 0.0121 | 0.0419 | 15997 | 13640 | 0.2357
e=15]4 0.8936 | 0.1064 | 0.1271 | 1.0299 | 07572 | 02727
10 | 1=1 |8 0.5408 | 00816 | 01171 | 06230 | 04586 | 0.1645
0 |8=05|R(y,) 04579 | 01014 | 0.1282 | 05217 | 03940 | 0.1277
h(y,) 03147 | 0.0244 | 00311 | 03269 | 03025 | 0.0244
ah(y) | 03779 | 00296 | 00376 | 03957 | 03602 | 0.0355
* 3.0415 | 00138 | 00562 | 3.3623 | 27207 | 0.6415
a A 0.8756 | 0.1244 | 01516 | 1.0453 | 07057 | 0.3396
10 | 2=1 | B 0.5529 0.1057 0.1483 0.6547 0.4510 0.2037
0 |8=05] R(y,) 05530 | 0.1089 | 01412 | 0.6409 | 04651 | 0.1758
h(v,) 0.2828 | 0.0410 | 0.0622 | 03099 | 02557 | 0.0541
h(y) | 03326 | 00482 | 00715 | 03688 | 02964 | 0.0723

(8 ¥o
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6.2 Application
In this section, the flexibility of the DAPW distribution is illustrated
through using three real data sets.

Application 1:

The first application is the vinyl chloride data obtained from clean
upgrading, monitoring wells in mg/L; this data set was used by
Bhaumik et al. (2009). The data is:
51,1.2,13,06,05,24,05,1.1,8.0,0.8, 0.4, 0.6, 0.9, 04, 2.0, 0.5,
53,32,27,29,25,23,1.0,0.2,0.10,0.1,1.8,0.9, 2.0, 4.0, 6.8, 1.2,
0.4,0.2.

Application 2:

The second data set contains fifty observations of lifetime presented by
Aarset (1987).

Thedatasetis 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6,7, 1, 1, 12, 18, 18§,
18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67,
67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85,
85, 86, 86.

Application 3:

The third data set is given by Murthy et al. (2004). It refers to the
time between failures for 30 repairable objects. The data is 1.43, 0.11,
0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 1.97, 0.74, 1.23, 0.94, 4.36,
0.40, 1.74, 4.73, 2.23, 0.45, 1.86, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37,
0.63,1.23,1.24, and 1.17.
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Figure 4: PP-plot, QQ-plot and TTT-plot of the
DAPW distribution for the first data set
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Figure 5: PP-plot, QQ-plot and TTT-plot of the
DAPW distribution for the second data set
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Figure 6: PP-plot, QQ-plot and TTT-plot of the
DAPW distribution for the third data set
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Table 6. Parameter estimates and goodness of fit for
various models fitted for the second data

Models | Estimates | SEs | P | Alc | BIC | Alcc | HQIC
a=5 1031

DAPW | 2=09 |026| 065 |171.95 | 177.95 | 18253 | 178.75
=12 |0.25

pAPR | & > |024 .0 13910839508 | 398.13 | 395.47
A=042 |0.28

papg | & 297 10241 0 | 23963 | 242.63 | 24668 | 244.01
A=091 |0.26

papwo| &1 024 oo | 17634 | 18034 | 183.39 | 180.73
=02 |0.26

Table 7. Parameter estimates and goodness of fit for various
models fitted for the third data

Models | Estimates | SEs | p-value | AIC | BIC | AICC | HQIC

a=240 [0.19

DAPW | i=115 |021| 059 |182.97|188.97 |193.17 | 189.89
f =082 |0.23
«=592 037

DAPR | 1=039 |025| 059 | 27821 |288.21 |285.02 | 282.66
x=860 |047

DAPE | A=100 |022| 0.07 | 24263 |246.63 |249.43 | 247.08

@=108 |0.22

190.23 | 194.23 | 197.28 | 194.62
DAPWO | f=1.02 | 022 0.06

Kolmogorov-Smirnov (K-S) goodness of fit test is applied to
check the validity of the fitted model. The p-values are 0.1069, 0.65
and 0.59, respectively. It shows that DAPW fits the data very well.

Figures 4-6 present the PP and QQ plots and TTT plot for the
three real data sets, which indicates that the DAPW distribution
provides better fit to the data sets. The TTT plot for the first and

o N\
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second real data sets which are displayed in Figures 4 and 5 provide
evidence that the first and second data sets possesses bathtub hrf, but
the TTT plot of the third real data set in Figure 6 indicates that the hrf
Is decreasing function.

The proposed distribution: DAPW distribution is compared to
other distributions which are considered sub-models DAPW
distribution such as discrete alpha power one parameter Weibull
(DAPWO) distribution, discrete alpha power Rayleigh (DAPR)
distribution and discrete alpha power exponential distribution (DAPE).

To verify which distribution fits better to the real data sets, the
values of the Akaike Information Criterion (AIC), Akaike Information
Criterion with correction (AICC), Bayesian Information Criterion
(BIC) and Hannon-Quinn Information Criterion (HQIC) are calculated
for second and third real data sets. The best distribution corresponds to
the lowest values of AIC, AICC, BIC and HQIC, also the highest p-
value,

where AIC=-2log L + 2k, AICC = AIC +

L+klogn and

HQIC = -2 log L + 2k log (log (n)), where k is the number of the

parameters and n is the sample size and L is the maximized value of

the likelihood function for the estimated model. Tables 6 and 7 display

the values of p-value, AIC, AICC, BIC and HQIC for the first and third

data sets.

7. Conclusion
In this paper, a family of discrete distributions is proposed.
Generalizations of discrete uniform, discrete exponential, discrete
Rayleigh and discrete Weibull are obtained using this family. Also,
many other discrete distributions can be obtained as sub models. As
a particular case, discrete alpha power Weibull distribution is
introduced. Some of its properties are studied. The ML estimators
for the model parameters are derived. The discrete alpha power
Weibull distribution appears to be more suitable for modeling real
data sets and is a better alternative to some distributions.
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