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Abstract 
 

This paper introduces a four-parameter competing risks model called the 
additive flexible Weibull extension-Lomax distribution. It has a very flexible 
hazard rate function accommodates different shapes, the most important 
shapes of them are the bathtub and the modified bathtub shapes. Moreover, it 
has several new and well-known models as special cases. Some main 
properties of the additive flexible Weibull extension-Lomax distribution are 
derived. The model parameters, reliability and hazard rate functions are 
estimated via the maximum likelihood method based on Type II censored 
samples. Also, the asymptotic confidence intervals of the parameters, 
reliability function and the hazard rate function are obtained. A simulation 
study is carried out to evaluate the performance of the maximum likelihood 
estimates. The superiority of the proposed distribution over some known 
distributions is demonstrated through some applications on COVID-19 data 
in some countries. 

 
Keywords: Competing risks, additive model, flexible Weibull extension 
distribution, the additive flexible Weibull extension-Lomax distribution, 
modified bathtub hazard shape. 

 
1. Introduction 

 
In reliability studies, lifetime testing, human mortality studies, 

engineering modeling, electronic sciences and biological surveys, there are 
different types of lifetime data. So, different shapes of lifetime distributions 
are required for fitting these types of lifetime data. Researchers have proposed 
several extensions and modifications to provide more flexibility than the 
existing distributions. Therefore, several methods for constructing, extending 
and generalizing lifetime distributions are presented [see Lai (2013)], such as: 
the transformations of variables and distribution functions, probability 
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integral transforms, compound distributions, finite and infinite mixture 
distributions. 

 
Another method for constructing new lifetime distributions is the 

competing risks approach, which is based on the concept of the competing 
risks. In many life-testing studies, often the failure of the tested item may be 
associated to more than one cause or mode of failure. These failure modes in 
some sense compete with each other in order to cause the failure of the tested 
item. Due to this reason, in the statistical literature this is well known as 
competing risks. Moreover, competing risks arise in series systems, in which 
the components are arranged in series. Each component has a certain 
distribution with certain parameters and these components are statistically 
independent of each other, therefore the lifetime of the series system is the 
minimum of its components lifetimes. Competing risks often occurred in 
reliability studies, demographic, medical and biological sciences and 
engineering applications. Furthermore, the competing risks model is also 
known as series model, additive model and multi-risk model.  

 
Based on the concept of the competing risks, there are many lifetime 

distributions that have been introduced in literature such as: Xie and Lai 
(1995) introduced the additive Weibull (AW) distribution. Wang (2000) 
presented the additive Burr XII distribution. Bousquet and Bertholon (2006) 
proposed a competing risks distribution, called the B distribution. Almalki 
and Yuan (2013) derived a new modified Weibull (NMW) distribution by 
combining the Weibull distribution with the modified Weibull distribution 
presented by 
Lai et al. (2003) in a series system. Cordeiro et al. (2013) constructed the 
exponential-Weibull. He et al. (2016) obtained the additive modified Weibull 
distribution. Oluyede et al. (2016) introduced the log-logistic Weibull 
distribution. Singh (2016) obtained the additive Perks-Weibull distribution. 
Mdlongwa et al. (2017) derived the Burr XII modified Weibull distribution. 
Tarvirdizade and Ahmadpour (2019) introduced Weibull-Chen distribution. 
Shakhatreh et al. (2019) proposed the log-normal modified Weibull 
distribution. Osagie and Osemwenkhae (2020) constructed the Lomax-
Weibull (L-W) distribution. Kamal and Ismail (2020) presented the flexible 
Weibull extension-Burr XII distribution by combining the flexible Weibull 
extension distribution (FWE) obtained by Bebbington et al. (2007a) and Burr 
XII distribution in a series system. Thach and Bris (2021) introduced the 
additive Chen-Weibull distribution. Khalil et al. (2021) presented the flexible 
additive Weibull distribution by combining three Weibull distributions. 
Makubate et al. (2021) proposed the Lindley-Burr XII distribution. Abba et 
al. (2022) introduced the flexible additive Chen-Gompertz distribution by 
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combining Chen and a special case of Gompertz distributions in a series 
system. Recently, Xavier et al. (2022) proposed the additive power-
transformed half-logistic model by combining two power-transformed half-
logistic distributions in a series system. More recently, Thach (2022) 
presented the three-component additive Weibull distribution. 

 
This paper aims to introduce a new competing risks model, called the 

additive flexible Weibull extension-Lomax (AFWE-L) distribution, by 
considering a series system with two components functioning independently 
in series. The lifetime of the first component, 푋 , has the FWE distribution 
and the lifetime of the second component, 푋 , has Lomax (L) distribution. 
Therefore, the lifetime of the system is 푋 = min{푋 , 푋 } has AFWE-L 
distribution with four parameters. Its hazard rate function (hrf) can be 
expressed as the sum of the hrfs of the FWE and L distributions, which 
shows different hazard shapes, the most important shapes are the bathtub and 
the modified bathtub (where the failure initially increases at the beginning for 
a short period; maybe due to manufacturing defects, then it is followed by a 
bathtub shape). 

 
The FWE distribution is a very flexible extension of Weibull distribution 

that was introduced by Bebbington et al. (2007a) as a member of the class of 
distributions which was presented by Gurvich et al. (1997). The reliability 
function (rf) and the hrf of the FWE distribution are given, respectively, by: 

푅 (푥; 훼, 훽) = 푒 ,																													푥 > 0; 	훼, 훽 > 0,									(1)	
and 

ℎ (푥; 훼, 훽) = 훼 +
훽
푥 푒 ,															푥 > 0; 	훼, 훽 > 0,									(2)	

where 훼 and 훽 are shape parameters. 
 

The flexibility of the FWE distribution is due to its hrf which has 
different shapes: increasing failure rate, increasing failure rate average and 
modified bathtub-shaped failure rate. Due to its flexibility, it has many 
applications in engineering, life testing experiments, applied statistics, 
reliability analysis and clinical studies [see Bebbington et al. (2007a), 
Bebbington et al. (2007b) and Choquet et al. (2013)]. 

 
The L distribution which is also named Pareto Type II distribution was 

pioneered by Lomax (1954) to model business failure data. It is known that it 
is a special case of Pearson Type VI distribution and it can be obtained as a 
compound of the exponential and gamma distributions. The L distribution 
belongs to the family of decreasing hrf. The L distribution has various 
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applications in several fields such as income and wealth inequality, actuarial, 
medical and biological sciences, engineering, lifetime and reliability analysis. 
Its rf and hrf are expressed as:  

푅 (푥; 휆, 휃) = 1 +
푥
휆 ,																					푥 > 0; 휆, 휃 > 0,						(3)	

and 

ℎ (푥; 휆, 휃) =
휃
휆 1 +

푥
휆 ,																			푥 > 0; 휆, 휃 > 0,						(4)	

where 휆 is a scale parameter and 휃 is a shape parameter. 
 

This paper is organized as follows: The construction of the proposed 
model and the graphical description of the pdf, hrf and the reversed hazard 
rate function (rhrf) of the proposed model are introduced in Section 2. In 
Section 3, some main properties of AFWE-L distribution are derived. The 
maximum likelihood (ML) estimators of the parameters, rf and hrf and the 
asymptotic confidence intervals (ACIs) of the parameters, rf and the hrf of 
AFWE-L distribution based on Type II censored samples are developed in 
Section 4. A simulation study is presented in Section 5 to evaluate the 
performance of the ML estimates. In Section 6, applications on COVID-19 
data in some countries are performed to demonstrate the superiority of the 
proposed distribution over some known distributions. 

 
2. The Model 

 
In this section, the construction of the proposed model based on the hrfs 

and rfs of the FWE and L distributions is derived. Also, the graphical 
description of the pdf, hrf and rhrf of the proposed model is introduced. 

  
The hrf of AFWE-L distribution with parameter vector 휓 = (훼, 훽, 휆, 휃) 

can be expressed as the sum of the hrfs of FWE and L distributions as 
follows: 

 
 ℎ 푥; 휓 = ℎ (푥; 훼, 훽) + ℎ (푥; 휆, 휃)																																																				

		= 훼 +
훽
푥 푒 +

휃
휆 1 +

푥
휆 ,							푥 > 0;	휓 > 0,				(5) 

 
and the rf of AFWE-L distribution can be obtained as  

푅 푥;휓 = 푅 (푥) = 푒 1 +
푥
휆 ,							푥 > 0;	휓 > 0,				(6)	

where 
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푅 (푥) and 푅 (푥) are the rfs of FWE and L distributions, respectively.  
Consequently, the probability density function (pdf) of AFWE-L distribution 
is given by:  

푓 푥;휓 = ℎ 푥; 휓 푅 푥;휓 					 
Hence, 

푓 푥;휓 = 훼 +
훽
푥 푒 +

휃
휆 1 +

푥
휆 푒 1 +

푥
휆 ,	

																																																																																											푥 > 0; 휓 > 0.				(7)	
The corresponding cumulative distribution function (cdf) of AFWE-L 
distribution is given by:  

퐹 푥;휓 = 1 − 푒 1 +
푥
휆 ,										푥 > 0;	휓 > 0.				(8) 

	
Moreover, the rhrf and the cumulative hazard rate function (chrf) of AFWE-
L distribution are given, respectively, as:  

푟 푥; 휓 =
푓 푥; 휓

퐹 푥;휓
	

																=
훼 + 훽

푥 푒 + 휃
휆 1 + 푥

휆 푒 1 + 푥
휆

1 − 푒 1 + 푥
휆

,	

																																																																																											푥 > 0;휓 > 0,				(9)	
and 

퐻 푥; 휓 = − ln푅 푥; 휓 = 푒 + 휃 ln 1 +
푥
휆 ,	

																																																																																										푥 > 0;	휓 > 0. (10) 
 

Plots of pdf, hrf and rhrf of AFWE-L distribution are given, respectively in 
Figures 1-3. 

 
Plots of the pdf, hrf and rhrf of AFWE-L distribution are provided to 

show the flexibility of pdf and hrf of AFWE-L distribution, which allow this 
distribution to fit different types of lifetime data. Figure 1 displays AFWE-L 
pdf for selected values of the parameters, where one can observe that the pdf 
of AFWE-L distribution can be decreasing, unimodal or decreasing-
unimodal. Also, Figure 2 shows AFWE-L distribution hrf for some values of 
the parameters. The hrf of AFWE-L distribution represents major shapes 
such that increasing, decreasing, bathtub, bi-bathtub and modified bathtub 
shapes. Moreover, plots of the rhrf of AFWE-L distribution for different 
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values of the parameters are given in Figure 3, which indicates that the rhrf of 
AFWE-L can be decreasing or have the reversed shape of the modified 
bathtub shape. 

 

 
Figure 1: Plots of AFWE-L pdf 

 

 
Figure 2: Plots of AFWE-L hrf 
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       Figure 3: Plots of AFWE-L rhrf 

 
An interpretation of AFWE-L distribution is as following: the lifetime of 

a series system with two components functioning independently, the lifetime 
of the first component has the FWE distribution, the lifetime of the second 
component has L distribution and the lifetime of the series system is the 
minimum of the lifetimes of the two components. Also, this new additive 
model can be interpreted as the lifetime of an item or an individual which is 
subject to two independent failure modes or causes, acting simultaneously on 
it and one of these failure modes can cause the failure of this item or this 
individual. The lifetime of one of these failure modes has the FWE 
distribution and the second has L distribution. 

 
3. Statistical Properties 

 
In this section some main properties of AFWE-L distribution are studied 

including: the quantile function, mode, central and non-central moments, 
moment generating function, 푟  incomplete moment and inequality curves, 
mean residual life (MRL) and mean inactivity time (MIT), R푒́nyi entropy 
and Tsallis entropy (q-entropy), the order statistics and some new and well-
known sub-models of the proposed distribution. 

 
3.1 The quantile function and the mode 
 
The quantile function of AFWE-L distribution can be obtained by inverting 

푅 푥; 휓 = 1 − 퓆, 0 < 퓆 < 1. 
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So, the quantile function can be obtained by solving the following nonlinear 
equation  

푒 퓆 퓆 + 휃 ln 1 +
푥퓆
휆 + ln(1 − 퓆) = 0,											0 < 퓆 < 1.				(11) 

  
As special cases of the quantile function are the median of AFWE-L 
distribution, denoted by 푥퓂, the first quartile, denoted by 푥 . , and the third 
quartile, denoted by 푥 . , which can be obtained, respectively, by setting 
퓆 = 0.5, 퓆 = 0.25 and 퓆 = 0.75  into (11). 

 
The mode of AFWE-L distribution is the value of 푥  which maximize 

푓 푥;휓 . So, the mode of AFWE-L distribution can be obtained by solving 
the following nonlinear equation numerically,  

훼 +
훽
푥

1 − 푒 −
2훽
푥

+
2휃
휆 훼 +

훽
푥

1 +
푥
휆

× 푒 − (휃 + 1)
휃
휆 1 +

푥
휆 = 0.																(12) 

 
The mathematical derivative of the mode of AFWE-L distribution is obtained 
in Appendix I. 

 
Some numerical values of the first quartile, the median and the third quartile 
as special cases of the quantile and the mode for different parameter values 
휓 = (훼, 훽, 휆, 휃)are listed in Table1. 

 
Table 1 

Some quartiles and the mode of AFWE-L distribution 
for different parameter values 

휶	 휷	 흀	 휽	 풙ퟎ.ퟐퟓ	 풙풎 풙ퟎ.ퟕퟓ	 퐌퐨퐝퐞	

4	 3	 1.25	 3	 0.1258	 0.3247	 0.6490	 0.7669	

1.5	 0.5	 4	 3	 0.2132	 0.3623	 0.5724	 0.2276	

1.5	 3	 4	 0.5	 0.9546	 1.2335	 1.4845	 1.2930	

4	 3	 4	 0.5	 0.6917	 0.8048	 0.8979	 0.8425	

2	 2	 3	 0.05	 0.6655	 0.9082	 1.0820	 0.9227	

3	 1.25	 4	 0.15	 0.4637	 0.5828	 0.6991	 0.5909	

1	 0.3	 6	 0.25	 0.2030	 0.3866	 0.7217	 0.1457	

0.85	 3	 2	 0.5	 0.9465	 1.4387	 1.9083	 1.4846	
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3.2 Central and non-central moments 
 

The 푟  non-central moment of a random variable 푋 has AFWE-L 
distribution is given by: 

휇 =
(−1) 	푖 	훼 	훽

푖! 푗! 푘! 푟휆

× 횩 푟 + 푗 − 푘, 휃 − (푟 + 푗 − 푘) ,					푟 = 1,2, . . . , (13)	
where 
횩(. , . ) is the beta function and 0 < 푟 + 푗 − 푘 < 휃. [for more details see 
Appendix II]. 

 
By substituting 푟 = 1 into (13), the mean of AFWE-L distribution can be 
obtained as follows:  

휇 =
(−1) 	푖 	훼 	훽 	휆

푖! 푗! 푘!

× 횩 1 + 푗 − 푘, 휃 − (1 + 푗 − 푘) .																													 (14)	
where 

0 < 1 + 푗 − 푘 < 휃. 
  

The 푟  central moment of a random variable 푋 has AFWE-L distribution is: 

휇 =
푟
푙
(−1) 휇 휇 ,																		푟 = 1, 2, . . . .												(15) 

 
Substituting 푟 = 2 in (15), the variance of AFWE-L distribution is: 

푉(푋) = 휇 = 휇 − 휇 .																																					(16) 
 

The coefficient of variation (CV), the coefficient of skewness (CS) and the 
coefficient of kurtosis (CK) are given, respectively, by:  

퐶푉 = √휇
휇 ,							퐶푆 =

휇
휇 ⁄ 								and								퐶푘 =

휇
휇 																(17)	

where 
휇  and 휇  are evaluated using (14) and (16), respectively.  휇  and 휇  can 
be calculated, respectively, by setting 푟 = 3 and 푟 = 4 into (15).  
 
Numerical results of the first four non-central moments, variance, CV, CS 
and CK of AFWE-L distribution for some parameter values are presented in 
Tables 2 and 3. 
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Table 2 
Moments of AFWE-L distribution for different values of 훼 and 훽, 

휆 = 1.25 and 휃 = 0.5  
휶 휷 흁 흁ퟐ 흁ퟑ 흁ퟒ 흁ퟐ 푪푽 푪푺 푪풌 

4	

3	

0.7083	 0.5633	 0.4689	 0.4020	 0.0617	 0.3506	 -1.1354	 3.6768	
3	 0.7985	 0.7290	 0.7030	 0.7025	 0.0915	 0.3788	 -0.9092	 3.1637	
2	 0.9421	 1.0466	 1.2477	 1.5587	 0.1590	 0.4232	 -0.5983	 2.6480	
1	 1.2390	 1.9410	 3.3916	 6.3780	 0.4060	 0.5143	 -0.0748	 2.2939	

0.85	 1.3191	 2.2456	 4.3133	 8.9877	 0.5055	 0.5390	 0.0489	 2.3074	

1.5	

3	 1.0570	 1.3520	 1.8821	 2.7724	 0.2348	 0.4585	 -0.3808	 2.4212	
2	 0.8787	 0.9375	 1.1041	 1.3937	 0.1653	 0.4627	 -0.1534	 2.4776	

1.25	 0.7074	 0.6188	 0.6123	 0.6620	 0.1184	 0.4865	 0.1709	 2.5913	
0.5	 0.4648	 0.2932	 0.2251	 0.1979	 0.0772	 0.5978	 0.7958	 3.2633	
0.3	 0.3718	 0.2055	 0.1454	 0.1205	 0.0673	 0.6975	 1.0867	 3.8558	

 
Table 3 

Moments of AFWE-L distribution for different values of 휆 and 휃, 
훼 = 0.5 and 훽 = 1.5 

흀 휽 흁 흁ퟐ 흁ퟑ 흁ퟒ 흁ퟐ 푪푽 푪푺 푪풌 

6	

0.5	

1.4461	 2.7880	 6.4991	 17.2885	 0.6968	 0.5773	 0.7773	 3.2068	
4	 1.4024	 2.6619	 6.1420	 16.2198	 0.6951	 0.5945	 0.7926	 3.2544	
3	 1.3638	 2.5536	 5.8419	 15.3358	 0.6936	 0.6107	 0.8088	 3.2975	
2	 1.2981	 2.3756	 5.3603	 13.9423	 0.6907	 0.6402	 0.8423	 3.3758	

1.25	 1.2056	 2.1379	 4.7389	 12.1878	 0.6846	 0.6863	 0.9023	 3.5035	

0.5	

0.75	 0.8046	 1.1961	 2.4042	 5.8130	 0.5488	 0.9207	 1.3744	 4.8618	
0.5	 0.9869	 1.6277	 3.4818	 8.7727	 0.6538	 0.8194	 1.1068	 3.9641	
0.25	 1.2293	 2.2417	 5.0862	 13.3246	 0.7306	 0.6953	 0.8556	 3.3528	
0.15	 1.3481	 2.5563	 5.9328	 15.7767	 0.7389	 0.6376	 0.7782	 3.2070	
0.05	 1.4823	 2.9205	 6.9292	 18.6980	 0.7234	 0.5738	 0.7409	 3.1189	

 
It can be noticed from Tables 2 and 3 that: 

 
 For fixed 훽 = 3, 휆 = 1.25 and 휃 = 0.5  

As 훼 decreases, the first four non-central moments, variance and CV of 
AFWE-L distribution increase, and the CS increases and shifts from the 
left (negatively) skewed shape to the right (positively) skewed shape. 
Moreover, the CK decreases, and the distribution changes from the 
leptokurtic shape to the platykurtic shape. 
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 For fixed 훼 = 0.5, 휆 = 1.25 and 휃 = 0.5  
As 훽 decreases, the first four non-central moments and variance of 
AFWE-L distribution decrease, the CV and CS increase and shifts from 
the left (negatively) skewed shape to the right (positively) skewed shape. 
The CK increases, and the distribution changes from the platykurtic 
shape to the leptokurtic shape. 

 For fixed 훼 = 0.5, 훽 = 1.5 and 휃 = 0.5  
As 휆 decreases, the first four non-central moments and variance of 
AFWE-L distribution decrease, the CV and CS increase to be more 
skewed to the right. Also, the CK increases and tends to be more 
leptokurtosis. 

 For fixed 훼 = 0.5, 훽 = 1.5 and 휆 = 0.5  
As 휃 decreases, the first four non-central moments and variance of 
AFWE-L distribution increases, and the CV, CS and CK decrease. 

 
3.3 The moment generating function 

 
The moment generating function, denoted by 푀 (푡), of a random variable 푋 
has AFWE-L distribution can be obtained as given below:  

푀 (푡) = 퐸(푒 ) = 푒 푓 푥;휓 푑푥 =
푡
푟! 휇 	

													=
푡
푟!
(−1) 	푖 	훼 	훽 	

푖! 푗! 푘! 푟	휆

× 횩 푟 + 푗 − 푘, 휃 − (푟 + 푗 − 푘) 	,																										(18) 
where 

0 < 푟 + 푗 − 푘 < 휃. 
 
3.4 Incomplete moments and inequality curves 

 
The 푟  incomplete moment of a random variable 푋 has AFWE-L 
distribution is given by:  

휇 (푡) = 푥 푓 푥; 휓 푑푥	

											= −푡 푅 푡; 휓

+
(−1) 	푖 	훼 	훽

푖! 푗! 푘!

× 푟휆 퐈횩 푟 + 푗 − 푘, 휃 − (푟 + 푗 − 푘) , (19) 
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where  

푅 푡; 휓 = 푒−푒
훼푡−훽푡 1 +

푡
휆

−휃

, 

퐈횩 푟 + 푗 − 푘, 휃 − (푟 + 푗 − 푘)  is a lower incomplete beta function 

and 
0 < 푟 + 푗 − 푘 < 휃. 

 
Lorenz and Bonferroni curves are well known inequality curves that have 
been extensively used in different fields such as economics, demography, 
insurance, reliability analysis and life testing. These curves are important 
applications of the first incomplete moment. Lorenz and Bonferroni curves 
are denoted, respectively, by 퐿 (푝) and 퐵 (푝) which are defined by:  

퐿(푝) =
1
휇 푥푓(푥)푑푥 =

휇(푞)
휇 ,																																																	(20)	

and 

퐵(푝) =
1
푝휇 푥푓(푥)푑푥 =

퐿(푝)
푝 ,																																															(21)	

where 휇 is obtained from (14), 휇(푞) is the first incomplete moment which 
can be obtained by substituting 푟 = 1 and 푡 = 푞	into (19) and 푞 =
퐹 (푝) for 0 < 푝 < 1. 

 
For AFWE-L distribution, the Lorenz and Bonferroni curves can be obtained, 
respectively, by: 	
퐿(푝)

=
−푞푅 푞;휓 + ∑ ∑ ∑ (−1) 	푖 	훼 	훽 휆

푖! 푗! 푘! 퐈횩 1 + 푗 − 푘, 휃 − (1 + 푗 − 푘)

∑ ∑ ∑ (−1) 	푖 	훼 	훽 	휆
푖! 푗! 푘! 횩 1 + 푗 − 푘, 휃 − (1 + 푗 − 푘)

, 

																																																																																																																												(22) 
and 
퐵(푝)

=
−푞푅 푞;휓 + ∑ ∑ ∑ (−1) 	푖 	훼 	훽 휆

푖! 푗! 푘! 퐈횩 1 + 푗 − 푘, 휃 − (1 + 푗 − 푘)

푝∑ ∑ ∑ (−1) 	푖 	훼 	훽 	휆
푖! 푗! 푘! 횩 1 + 푗 − 푘, 휃 − (1 + 푗 − 푘)

, 

																																																																																																																													(23)	
where 

0 < 1 + 푗 − 푘 < 휃. 
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3.5 The mean residual life and the mean inactivity time 
 

The MRL function or the life expectation at age 푡, denoted by 푚(푡), 
which represents the expected additional life length for a system or a unit 
which is alive at age 푡, it is given by:  

푚(푡) = 퐸(푋 − 푡|푋 > 푡) =
1

푅 푡; 휓
푅 푥; 휓 푑푥

=
1 + 푡

휆

푒

(−1) 푖 훼 훽 휆
푖! 푗! 푘!

× 퐈횩 1 + 푗 − 푘, 휃 − (1 + 푗 − 푘) ,																			(24)	
where 

퐈횩 1 + 푗 − 푘, 휃 − (1 + 푗 − 푘)  is an upper incomplete beta and  
0 < 1 + 푗 − 푘 < 휃. 

 
The MIT or the mean waiting time, also called the mean reversed residual life 
function, denoted by 푀(푡), which represents the waiting time elapsed since 
the failure of a system or a unit on the condition that this failure had occurred 
in (0, 푡), is given by:  

푀(푡) = 퐸[(푡 − 푋)|푋 ≤ 푡] =
1

퐹 푡; 휓
퐹 푥;휓 푑푥												

=
1

1 − 푒 1 + 푡
휆

푡

−
(−1) 	푖 	훼 	훽 	휆 	

푖! 푗! 푘!

× 퐈횩 1 + 푗 − 푘, 휃 − (1 + 푗 − 푘) ,																	 (25) 

where 
퐈횩 1 + 푗 − 푘, 휃 − (1 + 푗 − 푘)  is a lower incomplete beta function 

and 
0 < 1 + 푗 − 푘 < 휃. 
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3.6 Entropy measures 
 

In this subsection, entropy measures of AFWE-L distribution are derived. 
Entropy is a measure of uncertainty, randomness or variation of a random 
variable. One of the most important entropy measures is R푒́nyi entropy 
which was proposed by R푒́nyi (1961) as an extension of Shannon entropy 
and is defined by:  

퐼 (푥) =
1

1 − 훿 ln 푓 (푥)푑푥 ,																	훿 ≠ 1, 훿 > 0.				(26) 

 
For a random variable 푋 with AFWE-L distribution the R푒́nyi entropy is 
given by:  

퐼 푥; 휓 =
1

1 − 훿
ln

훿
푚

푚
푙

(−1) (푚 + 푖) 훿
푖! 푗! 푘!

× 훼 훽 ( )휆 휃( ) 횩 푗 − 푘 − 2(푚 − 푙)

+ 1, 훿(휃 + 1) − 푚 − (푗 − 푘 − 2(푚 − 푙) + 1) ,	

																																																																																																			훿 ≠ 1, 훿 > 0,						(27)	
where 

0 < 푗 − k − 2(푚 − 푙) + 1 < 훿(휃 + 1) − 푚. 
As 훿 → 1 R푒́nyi entropy tends to Shannon entropy.  
Another entropy measure is Tsallis entropy (also called 푞-entropy) introduced 
by Tsallis (1988) is defined by:  

퐼 (푥) =
1

1 − 푞 ln 1 − 푓 (푥)푑푥 ,																				푞 ≠ 1, 푞 > 0.				(28) 

For a random variable 푋 has AFWE-L distribution the Tsallis entropy is 
given by:  
I 푥;휓 	

=
1

1 − 푞
ln 1

−
푞
푚

푚
푙

(−1) (푚 + 푖) 푞
푖! 푗! 푘!

훼 훽 ( )

× 휆 휃( ) 횩 푗 − 푘 − 2(푚 − 푙) + 1,

푞(휃 + 1) − 푚 − (푗 − 푘 − 2(푚 − 푙) + 1) , 푞 ≠ 1, 푞 > 0, (29)	
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where 0 < 푗 − 푘 − 2(푚 − 푙) + 1 < 푞(휃 + 1) − 푚. 
 

3.7 The order statistics 
 

Let 푋 , 푋 , . . . , 푋  be a random sample from AFWE-L distribution,  푋  
are i.i.d. random variables. Let 푋( ) ≤ 	푋( ) ≤	. . . ≤ 	푋( ) be the 
corresponding order statistics, then the pdf of the 푘푡ℎ order statistic is given 
by: 

푓 : 푥;휓 = 퐶 , , ℎ 푥;휓 푅 푥;휓 ,			푥( ) > 0,			(30)	

where 

퐶 , , =
푛! (−1)

푗! 	(푘 − 푗 − 1)! (푛 − 푘)!. 

Substituting (5) and (6) into (30), then the pdf of the 푘  order statistics of 
AFWE-L distribution is:  

푓 : 푥; 휓 = 퐶 , , 훼 +
훽
푥( )

푒 ( ) ( ) +
휃
휆 1 +

푥( )

휆

× exp −(푗 + 푛 − 푘 + 1) 푒 ( ) ( )

+ 휃 ln 1 +
푥( )

휆 ,																													푥( ) > 0.							(31) 

 
Special cases  

 
a. The pdf of the smallest order statistics can be obtained when 푘 = 1 as: 

푓 : 푥; 휓 = 푛 훼 +
훽
푥( )

푒 ( ) ( ) +
휃
휆 1 +

푥( )

휆

× exp −푛 푒 ( ) ( ) + 휃 ln 1 +
푥( )

휆 ,	

																																																																																												푥( ) > 0.			(32) 
b. The pdf of the largest order statistics can be obtained if  푘 = 푛 as:  

푓 : 푥; 휓 = 퐶 , 훼 +
훽
푥( )

푒 ( ) ( ) +
휃
휆 1 +

푥( )

휆

× exp −(푗 + 1) 푒 ( ) ( ) + 휃 ln 1 +
푥( )

휆 ,	

																																																																																					푥( ) > 0, (33)	
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where      

퐶 , =
푛! (−1)

푖!	(푛 − 푗 − 1)!. 

3.8 Some sub-models 
 

There are several distributions that can be obtained as sub-models of AFWE-
L distribution and are summarized in Table 4. 

 
Table 4 

    Sub-models of AFWE-L distribution  
Parameter The resulting distribution cdf 

휆 → ∞ FWE distribution 퐹(푥;훼, 훽) = 1 − 푒 , 푥 > 0; 	훼, 훽 > 0. 

훽 → ∞ Lomax distribution 퐹(푥; 휆, 휃) = 1 − 1 +
푥
휆

,	
																																																		푥 > 0; 	휆, 휃 > 0. 

휆 = 1 

AFWE- compound exponential (or the 
AFWE- inverted Kumaraswamy 

(휃, 1) or the AFWE-beta Type II with 
(1, 휃)). 

퐹(푥; 훼, 훽, 휃) = 1 − 푒 (1 + 푥) ,	
																																													푥 > 0; 	훼, 훽, 휃 > 0. 

휃 = 1 AFWE- log logistic (휆) 퐹(푥; 훼, 훽, 휆) = 1 − 푒 1 +
푥
휆

,	
																																													푥 > 0; 	훼, 훽, 휆 > 0. 

휆 = 1 and 
휃 = 1 AFWE-standard Lomax 퐹(푥; 훼, 훽) = 1 − 푒 (1 + 푥) ,	

																																																	푥 > 0; 	훼, 훽 > 0. 
  

4. Maximum Likelihood Estimation 
 

In this subsection, the ML estimators of the parameters, rf and hrf based on 
Type II censored samples are derived. Also, ACIs of the parameters, rf and 
the hrf are obtained. 

  
4.1 Point estimation 

 
Suppose that  푋( ) ≤	푋( ) ≤	. . . ≤ 	푋( ) is a censored sample of size 푟 from 
AFWE-L distribution with parameter vector 휓 = (훼, 훽, 휆, 휃), then the 
likelihood function is given by:  

	퐿 휓; 푥 =
푛!

(푛 − 푟)! 푓 푥( ); 휓 푅 푥( );휓 			
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=
푛!

(푛 − 푟)! 훼 +
훽
푥( )

푒 ( ) ( ) +
휃
휆 1 +

푥( )
휆

× 1 +
푥( )
휆 1 +

푥( )

휆

( )

× exp −(푛 − 푟)푒 ( ) ( ) − 푒 ( ) ( ) .					 (34) 

The natural logarithm of the likelihood function is  
ℓ = ln 퐿 휓; 푥 	

= ln
푛!

(푛 − 푟)! + ln 훼 +
훽
푥( )

푒 ( ) ( ) +
휃
휆 1 +

푥( )
휆

− 휃 ln 1 +
푥( )
휆 − 푒 ( ) ( ) − 휃(푛 − 푟) ln 1 +

푥( )

휆

− (푛 − 푟)푒 ( ) ( ) .																																																																																(35)	
By differentiating the log likelihood function in (35) with respect to the 
parameters 훼, 훽, 휆 and 휃 as follows:  

휕ℓ
휕훼 =

ℎ 푥( ); 휓

ℎ 푥( ); 휓
− 푥( )푒

( ) ( )

− (푛 − 푟)푥( )푒
( ) ( ) ,																																													(36)	

휕ℓ
휕훽 =

ℎ 푥( ); 휓

ℎ 푥( ); 휓
+

1
푥( )

푒 ( ) ( )

+
(푛 − 푟)
푥( )

푒 ( ) ( ) ,																																																				(37)	

휕ℓ
휕휆 =

ℎ 푥( ); 휓

ℎ 푥( ); 휓
+
휃
휆

푥( )
1 +

푥( )
휆

+
휃(푛 − 푟)

휆
푥( )

1 +
푥( )
휆

,																																															(38)	

and 
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휕ℓ
휕휃 =

ℎ 푥( ); 휓

ℎ 푥( ); 휓
− ln 1 +

푥( )
휆

− (푛 − 푟) ln 1 +
푥( )

휆 ,																																														(39)	

where ℎ 푥( ); 휓  is defined in (5),  

ℎ 푥( ); 휓 =
휕ℎ 푥( ); 휓

휕훼 = 푥( ) 훼 +
훽
푥( )

푒 ( ) ( ) + 푒 ( ) ( ) ,	

ℎ 푥( ); 휓 =
휕ℎ 푥( ); 휓

휕훽

=
1
푥( )

푒 ( ) ( ) −
1
푥( )

훼 +
훽
푥( )

푒 ( ) ( ) ,	

ℎ 푥( ); 휓 =
휕ℎ 푥( ); 휓

휕휆 = −
휃

휆 1 +
푥( )
휆

,	

and 

ℎ 푥( ); 휓 =
휕ℎ 푥( ); 휓

휕휃 =
1

휆 1 +
푥( )
휆

. 

 
The ML estimates of the parameters 휓 = (훼, 훽, 휆, 휃) can be obtained by 
equating Equations (36) − (39) to zero and solving numerically. 

 
The ML estimators of  푅 푥;휓  and ℎ 푥; 휓  can be obtained, using the 
invariance property of the ML estimators, by replacing the parameters 
휓 = (훼, 훽, 휆, 휃) in (5) and (6) by their ML estimators, then the ML 

estimators of 푅 푥; 휓  and ℎ 푥;휓  can be given, respectively, as follows: 
 

푅 푥;휓 = 푒 1 +
푥
휆

,																													푥 > 0,				(40)	

and 

ℎ 푥; 휓 = 훼 +
훽
푥 푒 +

휃
휆
1 +

푥
휆

,								푥 > 0.			(41) 
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4.2 Asymptotic confidence intervals 
 

To obtain confidence intervals for the parameters 휓 = (훼, 훽, 휆, 휃) of 
AFWE-L distribution, the distributions of the ML estimators 
휓 = 훼,훽, 휆, 휃  are needed. Since the ML estimators 휓 = 훼,훽, 휆, 휃  do 
not have closed form, so their exact distribution cannot be obtained. 
Therefore, the ACIs can be derived by using the asymptotic distribution of 
the ML estimators. The ML estimators are asymptotically normal with mean 
(훼, 훽, 휆, 휃) and the asymptotic variance-covariance matrix is given by the 
inverse of the asymptotic Fisher information matrix as  

퐼 휓 ≃

⎝

⎜
⎛
 

푣푎푟(훼) 푐표푣 훼, 훽 푐표푣 훼, 휆 푐표푣 훼, 휃
푐표푣 훼, 훽 푣푎푟 훽 푐표푣 훽, 휆 푐표푣 훽, 휃
푐표푣 훼, 휆 푐표푣 훽, 휆 푣푎푟 휆 푐표푣 휆, 휃
푐표푣 훼, 휃 푐표푣 훽, 휃 푐표푣 휆, 휃 푣푎푟 휃 ⎠

⎟
⎞
,	

																																																																																																																				(42) 
where the derivatives of the  퐼  elements of the asymptotic Fisher 
information matrix are given in Appendix III. 

 
Therefore, the (1 − 휔)100% bounds of the ACIs of the parameters 
휓 = (훼, 훽, 휆, 휃) are as follows:  

훼 ± Ζ 푣푎푟(훼),												훽 ± Ζ 푣푎푟 훽 ,	

																휆 ± Ζ 푣푎푟 휆 			and			휃 ± Ζ 푣푎푟 휃 ,												(43)	

where Ζ  is the (1 − 휔)100% percentage point of the standard normal 

distribution. 
 

To obtain the ACIs of the rf and the hrf of AFWE-L distribution, 
variances of the ML estimators of the rf and hrf are needed. Therefore, the 
delta method discussed in Greene (2018) and used by EL-Sagheer (2018), 
Thach and Bris (2021), EL-Sagheer et al. (2021), Buzaridah et al. (2022) and 
Thach (2022) can be used to derive the asymptotic variances of 푅 푥;휓  

and ℎ 푥;휓 . 

The asymptotic variances of 푅 푥;휓  and ℎ 푥;휓  can be given, 
respectively, by:  

푣푎푟 푅 푥;휓 = 휉퐼 휓 휉 ,																																																	 
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푣푎푟 ℎ 푥; 휓 = 휂́퐼 휓 휂 ,																																							(44) 

where 
휉 = 푅 푥;휓 푅 푥;휓 푅 푥;휓 푅 푥; 휓 , 

and 
휂́ = ℎ 푥;휓 ℎ 푥; 휓 ℎ 푥; 휓 ℎ 푥;휓 . 

For more details about the asymptotic variances of 푅 푥;휓  and ℎ 푥; 휓  
see Appendix IV. 
Thus,  the (1 − 휔)100% bounds of the ACIs of the rf and the hrf are:  

푅 푥; 휓 ± Ζ 푣푎푟 푅 푥; 휓 ,	

and 

ℎ 푥; 휓 ± Ζ 푣푎푟 ℎ 푥; 휓 .																					(45) 

  
5. Simulation Study 

 
In this section, a simulation study is conducted to examine the performance 
of the ML estimates of the parameters, rf and hrf of AFWE-L distribution 
under Type II censoring scheme, as follows: 

 
a. Conducting various simulations for different samples of size (푛 =

30, 60, 100, 200,500) generated from AFWE-L distribution using 
different parameter values: 

 
		퐼: (훼 = 1.15, 훽 = 0.3, 휆 = 0.15, 휃 = 0.1),	
퐼퐼: (훼 = 0.5, 훽 = 0.25, 휆 = 0.15, 휃 = 0.1),	

and 
퐼퐼퐼: (훼 = 0.8, 훽 = 0.5, 휆 = 0.5, 휃 = 0.5).							 

 
b. The simulation study is performed based on two level of censoring 

(30%, 0%).  
c. The simulation study is conducted using number of replications 

푁푅 = 1000 using Mathematica 11. 
d. Tables 5 - 7 display The ML averages, the estimated risks (ER), the 

relative errors (RE), the variances and the ACIs of the parameters with 
their lengths, where the ER and the RE are computed as follows:  

퐸푅 =
∑ 휓 − 휓

푁푅 	



 

211   
 

–  

and 

푅퐸 =
√퐸푅

푡푟푢푒	푣푎푙푢푒.					 
 

e. Tables 8 - 10 present the ML averages, ER, RE, variances of the rf, hrf 
and the ACIs at time 푥 = 0.4. 

 
Concluding remarks:  

 
 From Tables 5 - 7, one can observe that the ML averages of the estimates 

of the parameters of AFWE-L distribution are close to the population 
parameter values as the sample size 푛 increases and as the level of 
censoring decreases. Moreover, the ERs, REs and the variances of the 
ML estimates of the parameters 휓 = (훼, 훽, 휆, 휃) decrease, in most 
cases, as the sample size increases and as the level of censoring 
decreases. 

 From Tables 8-10, one can conclude that in most cases, as the sample 
size increases and as the level of censoring decreases, the ERs, REs and 
the variances of the ML estimates of the rf and the hrf decrease. 

 As the sample size increases and the level of censoring decreases, the 
length of the ACIs of the parameters, rf and hrf of AFWE-L distribution 
become narrower, in most cases. 
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Table 5 
ML averages, estimated risks, relative errors, variances and 95% ACIs of the 

parameters of AFWE-L distribution for different samples of size  푛 and 
푁푅 = 1000, (훼 = 1.15, 훽 = 0.3, 휆 = 0.15, 휃 = 0.1) 

풏 풓 흍 퐀퐯퐞퐫퐚퐠퐞 퐄퐑 퐑퐄 퐕퐚퐫퐢퐚퐧퐜퐞 퐔퐋 퐋퐋 퐋퐞퐧퐠퐭퐡 

30 

ퟐퟏ 

훼 1.1051	 0.0993	 0.2740	 0.0973	 1.7164	 0.4938	 1.2226	
훽 0.3381	 0.0111	 0.3525	 0.0097	 0.5314	 0.1448	 0.3867	
휆 0.1922	 0.0283	 1.1216	 0.0265	 0.5114	 0.0000	 0.5114	
휃 0.1076	 0.0056	 0.7450	 0.0055	 0.2529	 0.0000	 0.2529	

ퟑퟎ 

훼 1.2149	 0.0439	 0.1822	 0.0397	 1.6054	 0.8244	 0.7810	
훽 0.2960	 0.0028	 0.1759	 0.0028	 0.3991	 0.1928	 0.2063	
휆 0.1752	 0.0067	 0.5468	 0.0061	 0.3282	 0.0223	 0.3059	
휃 0.1035	 0.0024	 0.4846	 0.0023	 0.1982	 0.0087	 0.1895	

60 

ퟒퟐ 

훼 1.0566	 0.0721	 0.2335	 0.0634	 1.5500	 0.5633	 0.9867	
훽 0.3359	 0.0092	 0.3204	 0.0080	 0.5106	 0.1612	 0.3494	
휆 0.1768	 0.0083	 0.6060	 0.0075	 0.3471	 0.0066	 0.3405	
휃 0.0996	 0.0035	 0.5916	 0.0035	 0.2156	 0.0000	 0.2156	

ퟔퟎ 

훼 1.1787	 0.0196	 0.1216	 0.0187	 1.4470	 0.9104	 0.5366	
훽 0.2885	 0.0015	 0.1273	 0.0013	 0.3599	 0.2171	 0.1428	
휆 0.1594	 0.0054	 0.4913	 0.0053	 0.3027	 0.0161	 0.2865	
휃 0.0929	 0.0014	 0.3715	 0.0013	 0.1644	 0.0215	 0.1429	

100 

ퟕퟎ 

훼 1.0440	 0.0580	 0.2094	 0.0467	 1.4678	 0.6203	 0.8475	
훽 0.3309	 0.0025	 0.1650	 0.0015	 0.4067	 0.2551	 0.1516	
휆 0.1671	 0.0050	 0.4727	 0.0047	 0.3020	 0.0321	 0.2698	
휃 0.0933	 0.0017	 0.4153	 0.0017	 0.1736	 0.0130	 0.1607	

ퟏퟎퟎ 

훼 1.1638	 0.0112	 0.0922	 0.0110	 1.3697	 0.9578	 0.4119	
훽 0.2880	 0.0011	 0.1094	 0.0009	 0.3478	 0.2281	 0.1197	
휆 0.1551	 0.0036	 0.3986	 0.0036	 0.2719	 0.0384	 0.2335	
휃 0.0896	 0.0011	 0.3359	 0.0010	 0.1522	 0.0270	 0.1252	

200 

ퟏퟒퟎ 

훼 1.0174	 0.0577	 0.2088	 0.0401	 1.4098	 0.6251	 0.7847	
훽 0.3309	 0.0019	 0.1455	 0.0010	 0.3913	 0.2706	 0.1207	
휆 0.1648	 0.0050	 0.4729	 0.0048	 0.3008	 0.0288	 0.2720	
휃 0.0907	 0.0009	 0.3054	 0.0009	 0.1476	 0.0337	 0.1140	

ퟐퟎퟎ 

훼 1.1613	 0.0056	 0.0653	 0.0055	 1.3067	 1.0159	 0.2909	
훽 0.2866	 0.0007	 0.0855	 0.0005	 0.3295	 0.2437	 0.0858	
휆 0.1410	 0.0034	 0.3867	 0.0033	 0.2533	 0.0287	 0.2246	
휃 0.0831	 0.0012	 0.3393	 0.0009	 0.1408	 0.0254	 0.1154	

500 

ퟑퟓퟎ 

훼 1.0136	 0.0574	 0.2083	 0.0388	 1.3994	 0.6277	 0.7717	
훽 0.3279	 0.0014	 0.1227	 0.0006	 0.3750	 0.2808	 0.0942	
휆 0.1610	 0.0022	 0.3105	 0.0021	 0.2497	 0.0723	 0.1774	
휃 0.0878	 0.0005	 0.2267	 0.0004	 0.1252	 0.0504	 0.0749	

ퟓퟎퟎ 

훼 1.1543	 0.0021	 0.0401	 0.0021	 1.2444	 1.0643	 0.1801	
훽 0.2856	 0.0004	 0.0697	 0.0002	 0.3152	 0.2559	 0.0593	
휆 0.1208	 0.0032	 0.3759	 0.0023	 0.2153	 0.0263	 0.1890	
휃 0.0736	 0.0014	 0.3738	 0.0007	 0.1253	 0.0218	 0.1036	
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Table 6 
ML averages, estimated risks, relative errors, variances and 95% ACIs of the 

parameters of AFWE-L distribution for different samples of size 푛 and 
푁푅 = 1000, (훼 = 0.5, 훽 = 0.25, 휆 = 0.15, 휃 = 0.1) 

 

풏 풓 흍 퐀퐯퐞퐫퐚퐠퐞 퐄퐑 퐑퐄 퐕퐚퐫퐢퐚퐧퐜퐞 퐔퐋 퐋퐋 퐋퐞퐧퐠퐭퐡 

30 

ퟐퟏ 

훼	 0.4911	 0.0294	 0.3432	 0.0294	 0.8269	 0.1552	 0.6717	
훽	 0.3133	 0.0161	 0.5073	 0.0121	 0.5287	 0.0979	 0.4308	
휆	 0.2040	 0.0314	 1.1819	 0.0285	 0.5350	 0.0000	 0.5350	
휃	 0.1190	 0.0099	 0.9968	 0.0096	 0.3108	 0.0000	 0.3108	

ퟑퟎ 

훼	 0.5424	 0.0127	 0.2252	 0.0109	 0.7469	 0.3379	 0.4090	
훽	 0.2840	 0.0101	 0.4011	 0.0089	 0.4689	 0.0991	 0.3698	
휆	 0.1798	 0.0199	 0.9396	 0.0190	 0.4498	 0.0000	 0.4498	
휃	 0.1180	 0.0097	 0.9867	 0.0094	 0.3081	 0.0000	 0.3081	

60 

ퟒퟐ 

훼	 0.4586	 0.0171	 0.2618	 0.0154	 0.7080	 0.2153	 0.4867	
훽	 0.3038	 0.0084	 0.3659	 0.0055	 0.4488	 0.1587	 0.2901	
휆	 0.2055	 0.0225	 1.0006	 0.0195	 0.4788	 0.0000	 0.4788	
휃	 0.1152	 0.0078	 0.8840	 0.0076	 0.2859	 0.0000	 0.2859	

ퟔퟎ 

훼	 0.5253	 0.0055	 0.1480	 0.0048	 0.6616	 0.3890	 0.2726	
훽	 0.2608	 0.0040	 0.2539	 0.0039	 0.3834	 0.1381	 0.2452	
휆	 0.1709	 0.0159	 0.8399	 0.0154	 0.4144	 0.0000	 0.4144	
휃	 0.1015	 0.0065	 0.8073	 0.0065	 0.2597	 0.0000	 0.2597	

100 

ퟕퟎ 

훼	 0.4549	 0.0134	 0.2317	 0.0114	 0.6640	 0.2458	 0.4182	
훽	 0.3052	 0.0068	 0.3288	 0.0037	 0.4246	 0.1859	 0.2387	
휆	 0.2007	 0.0145	 0.8014	 0.0119	 0.4143	 0.0000	 0.4143	
휃	 0.1124	 0.0048	 0.6951	 0.0047	 0.2464	 0.0000	 0.2464	

ퟏퟎퟎ 

훼	 0.5217	 0.0037	 0.1221	 0.0033	 0.6335	 0.4100	 0.2236	
훽	 0.2557	 0.0034	 0.2321	 0.0033	 0.3689	 0.1426	 0.2263	
휆	 0.1681	 0.0168	 0.8646	 0.0165	 0.4198	 0.0000	 0.4198	
휃	 0.0979	 0.0084	 0.9176	 0.0084	 0.2777	 0.0000	 0.2777	

200 

ퟏퟒퟎ 

훼	 0.4476	 0.0122	 0.2205	 0.0094	 0.6377	 0.2574	 0.3802	
훽	 0.2975	 0.0033	 0.2284	 0.0010	 0.3597	 0.2352	 0.1245	
휆	 0.1967	 0.0107	 0.6899	 0.0085	 0.3777	 0.0157	 0.3620	
휃	 0.1085	 0.0023	 0.4789	 0.0022	 0.2009	 0.0161	 0.1848	

ퟐퟎퟎ 

훼	 0.5160	 0.0018	 0.0838	 0.0015	 0.5919	 0.4401	 0.1518	
훽	 0.2491	 0.0010	 0.1248	 0.0010	 0.3102	 0.1880	 0.1222	
휆	 0.1638	 0.0113	 0.7085	 0.0111	 0.3703	 0.0000	 0.3703	
휃	 0.0904	 0.0032	 0.5622	 0.0031	 0.1989	 0.0000	 0.1989	

500 

ퟑퟓퟎ 

훼	 0.4403	 0.0122	 0.2212	 0.0087	 0.6229	 0.2578	 0.3652	
훽	 0.2963	 0.0028	 0.2116	 0.0007	 0.3466	 0.2460	 0.1006	
휆	 0.1881	 0.0072	 0.5653	 0.0057	 0.3366	 0.0396	 0.2970	
휃	 0.1030	 0.0015	 0.3828	 0.0015	 0.1778	 0.0282	 0.1496	

500 

훼	 0.5132	 0.0010	 0.0641	 0.0009	 0.5704	 0.4560	 0.1144	
훽	 0.2462	 0.0006	 0.0959	 0.0006	 0.2926	 0.1998	 0.0928	
휆	 0.1614	 0.0202	 0.9465	 0.0200	 0.4387	 0.0000	 0.4387	
휃	 0.0875	 0.0042	 0.6509	 0.0041	 0.2127	 0.0000	 0.2127	
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Table 7 
ML averages, estimated risks, relative errors, variances and 95% ACIs of the 

parameters of AFWE-L distribution for different samples of size 푛 and 
푁푅 = 1000, (훼 = 0.8, 훽 = 0.5, 휆 = 0.5, 휃 = 0.5) 

풏 풓 흍 퐀퐯퐞퐫퐚퐠퐞 퐄퐑 퐑퐄 퐕퐚퐫퐢퐚퐧퐜퐞 퐔퐋 퐋퐋 퐋퐞퐧퐠퐭퐡 

30 

ퟐퟏ 

훼	 0.7220	 0.0519	 0.2848	 0.0458	 1.1415	 0.3025	 0.8391	
훽	 0.4186	 0.0200	 0.2829	 0.0134	 0.6454	 0.1918	 0.4536	
휆	 0.5490	 0.0865	 0.5882	 0.0841	 1.1174	 0.0000	 1.1174	
휃	 0.5033	 0.0835	 0.5778	 0.0835	 1.0695	 0.0000	 1.0695	

ퟑퟎ 

훼	 0.8029	 0.0343	 0.2315	 0.0343	 1.1659	 0.4400	 0.7259	
훽	 0.3785	 0.0254	 0.3189	 0.0107	 0.5808	 0.1762	 0.4046	
휆	 0.5115	 0.0592	 0.4865	 0.0590	 0.9878	 0.0353	 0.9525	
휃	 0.4964	 0.0724	 0.5382	 0.0724	 1.0238	 0.0000	 1.0238	

60 

ퟒퟐ 

훼	 0.6906	 0.0431	 0.2595	 0.0311	 1.0364	 0.3447	 0.6916	
훽	 0.4128	 0.0125	 0.2238	 0.0049	 0.5502	 0.2754	 0.2747	
휆	 0.5291	 0.0429	 0.4143	 0.0421	 0.9311	 0.1270	 0.8041	
휃	 0.4798	 0.0287	 0.3391	 0.0283	 0.8097	 0.1499	 0.6598	

ퟔퟎ 

훼	 0.7898	 0.0079	 0.1108	 0.0078	 0.9623	 0.6173	 0.3450	
훽	 0.3791	 0.0203	 0.2850	 0.0057	 0.5270	 0.2312	 0.2958	
휆	 0.4756	 0.0239	 0.3089	 0.0233	 0.7745	 0.1766	 0.5979	
휃	 0.4628	 0.0283	 0.3365	 0.0269	 0.7843	 0.1412	 0.6431	

100 

ퟕퟎ 

훼	 0.6811	 0.0386	 0.2456	 0.0245	 0.9877	 0.3745	 0.6133	
훽	 0.4095	 0.0105	 0.2047	 0.0023	 0.5035	 0.3156	 0.1878	
휆	 0.5217	 0.0148	 0.2432	 0.0143	 0.7562	 0.2872	 0.4690	
휃	 0.4695	 0.0138	 0.2349	 0.0129	 0.6918	 0.2472	 0.4446	

ퟏퟎퟎ 

훼	 0.7866	 0.0045	 0.0834	 0.0043	 0.9147	 0.6586	 0.2561	
훽	 0.3740	 0.0177	 0.2658	 0.0018	 0.4569	 0.2911	 0.1658	
휆	 0.4536	 0.0141	 0.2377	 0.0120	 0.6682	 0.2391	 0.4291	
휃	 0.4353	 0.0134	 0.2318	 0.0092	 0.6236	 0.2469	 0.3768	

200 

ퟏퟒퟎ 

훼	 0.6762	 0.0349	 0.2335	 0.0196	 0.9504	 0.4021	 0.5483	
훽	 0.4081	 0.0097	 0.1971	 0.0013	 0.4780	 0.3382	 0.1398	
휆	 0.5217	 0.0050	 0.1419	 0.0046	 0.6541	 0.3894	 0.2647	
휃	 0.4657	 0.0041	 0.1283	 0.0029	 0.5721	 0.3594	 0.2127	

ퟐퟎퟎ 

훼	 0.7804	 0.0026	 0.0641	 0.0022	 0.8732	 0.6876	 0.1856	
훽	 0.3698	 0.0175	 0.2647	 0.0006	 0.4161	 0.3235	 0.0925	
휆	 0.4331	 0.0087	 0.1864	 0.0042	 0.5601	 0.3060	 0.2542	
휃	 0.4113	 0.0104	 0.2040	 0.0025	 0.5102	 0.3125	 0.1977	

500 

ퟑퟓퟎ 

훼	 0.6677	 0.0243	 0.2314	 0.0168	 0.9215	 0.4139	 0.5076	
훽	 0.4063	 0.0096	 0.1960	 0.0008	 0.4608	 0.3513	 0.1094	
휆	 0.5198	 0.0028	 0.1051	 0.0024	 0.6152	 0.4244	 0.1909	
휃	 0.4622	 0.0025	 0.1006	 0.0011	 0.5273	 0.3971	 0.1302	

500 

훼	 0.7770	 0.0014	 0.0472	 0.0009	 0.8358	 0.7182	 0.1176	
훽	 0.3695	 0.0172	 0.2625	 0.0002	 0.3961	 0.3428	 0.0533	
휆	 0.4307	 0.0064	 0.1596	 0.0016	 0.5080	 0.3533	 0.1548	
휃	 0.4052	 0.0098	 0.1975	 0.0008	 0.4592	 0.3512	 0.1081	
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Table 8 
ML averages, estimated risks, relative errors, variances and 95% ACIs of the 

rf and the hrf of AFWE-L distribution for different samples of size 푛 and 
푁푅 = 1000, (훼 = 1.15, 훽 = 0.3, 휆 = 0.15, 휃 = 0.1, 푥 = 0.4) 

풏 풓 퐫퐟 and 퐡퐫퐟 퐀퐯퐞퐫퐚퐠퐞 퐄퐑 퐑퐄 퐕퐚퐫퐢퐚퐧퐜퐞 퐔퐋 퐋퐋 퐋퐞퐧퐠퐭퐡 

30 

21 
푅 푥 ;휓 	 0.4517	 0.0051	 0.1723	 0.0038	 0.5728	 0.3305	 0.2424	

ℎ 푥 ;휓 	 1.8342	 0.5425	 0.4566	 0.4937	 3.2114	 0.4570	 2.7544	

30 
푅 푥 ;휓 	 0.4071	 0.0021	 0.1094	 0.0020	 0.4947	 0.3196	 0.1751	

ℎ 푥 ;휓 	 1.5923	 0.1119	 0.2074	 0.1115	 2.2467	 0.9378	 1.3089	

60 

42 
푅 푥 ;휓 	 0.4581	 0.0039	 0.1505	 0.0021	 0.5479	 0.3683	 0.1796	

ℎ 푥 ;휓 	 1.8082	 0.4848	 0.4316	 0.4468	 3.1183	 0.4981	 2.6203	

60 
푅 푥 ;휓 	 0.4089	 0.0009	 0.0731	 0.0009	 0.4669	 0.3508	 0.1161	

ℎ 푥 ;휓 	 1.5352	 0.0547	 0.1450	 0.0486	 1.9673	 1.1031	 0.8642	

100 

70 
푅 푥 ;휓 	 0.4591	 0.0032	 0.1367	 0.0013	 0.5306	 0.3876	 0.1430	

ℎ 푥 ;휓 	 1.7627	 0.0806	 0.1760	 0.0583	 2.2358	 1.2897	 0.9461	

100 
푅 푥 ;휓 	 0.4113	 0.0007	 0.0614	 0.0006	 0.4606	 0.3620	 0.0986	

ℎ 푥 ;휓 	 1.5257	 0.0411	 0.1257	 0.0335	 1.8841	 1.1672	 0.7170	

200 

140 
푅 푥 ;휓 	 0.4634	 0.0032	 0.1364	 0.0009	 0.5230	 0.4037	 0.1193	

ℎ 푥 ;휓 	 1.7563	 0.0568	 0.1477	 0.0363	 2.1296	 1.3829	 0.7468	

200 
푅 푥 ;휓 	 0.4117	 0.0003	 0.0442	 0.0003	 0.4468	 0.3765	 0.0703	

ℎ 푥 ;휓 	 1.5091	 0.0290	 0.1056	 0.0182	 1.7734	 1.2449	 0.5285	

500 

350 
푅 푥 ;휓 	 0.4625	 0.0029	 0.1294	 0.0007	 0.5138	 0.4112	 0.1026	

ℎ 푥 ;휓 	 1.7332	 0.0361	 0.1177	 0.0217	 2.0218	 1.4447	 0.5771	

500 
푅 푥 ;휓 	 0.4136	 0.0001	 0.0286	 0.0001	 0.4365	 0.3906	 0.0459	

ℎ 푥 ;휓 	 1.4905	 0.0252	 0.0985	 0.0102	 1.6882	 1.2927	 0.3954	

  
  
  
  
  
  

  



 

216   
 

–  

Table 9 
ML averages, estimated risks, relative errors, variances and 95% ACIs of the 

rf and the hrf of AFWE-L distribution for different samples of size 푛 and 
푁푅 = 1000, (훼 = 0.5, 훽 = 0.25, 휆 = 0.15, 휃 = 0.1, 푥 = 0.4) 

풏 풓 퐫퐟 and 퐡퐫퐟 퐀퐯퐞퐫퐚퐠퐞 퐄퐑 퐑퐄 퐕퐚퐫퐢퐚퐧퐜퐞 퐔퐋 퐋퐋 퐋퐞퐧퐠퐭퐡 

30 

21 
푅 푥 ;휓 	 0.5012	 0.0047	 0.1492	 0.0027	 0.6025	 0.3999	 0.2026	

ℎ 푥 ;휓 	 1.6132	 0.6751	 0.6550	 0.5454	 3.0620	 0.1645	 2.8975	

30 
푅 푥 ;휓 	 0.4716	 0.0024	 0.1079	 0.0022	 0.5637	 0.3796	 0.1842	

ℎ 푥 ;휓 	 1.4716	 0.4666	 0.5445	 0.4194	 2.7412	 0.2026	 2.5385	

60 

42 
푅 푥 ;휓 	 0.5031	 0.0036	 0.1315	 0.0015	 0.5779	 0.4284	 0.1495	

ℎ 푥 ;휓 	 1.5364	 0.3065	 0.4413	 0.2270	 2.4702	 0.6027	 1.8676	

60 
푅 푥 ;휓 	 0.4664	 0.0011	 0.0715	 0.0010	 0.5275	 0.4053	 0.1221	

ℎ 푥 ;휓 	 1.3107	 0.1841	 0.3421	 0.1810	 2.1445	 0.4770	 1.6676	

100 

70 
푅 푥 ;휓 	 0.5054	 0.0032	 0.1244	 0.0009	 0.5629	 0.4479	 0.1150	

ℎ 푥 ;휓 	 1.5387	 0.2490	 0.3978	 0.1683	 2.3427	 0.7349	 1.6079	

100 
푅 푥 ;휓 	 0.4656	 0.0008	 0.0632	 0.0008	 0.5194	 0.4118	 0.1076	

ℎ 푥 ;휓 	 1.2752	 0.1546	 0.3134	 0.0008	 2.0448	 0.5056	 1.5392	

200 

140 
푅 푥 ;휓 	 0.5029	 0.0026	 0.1118	 0.0005	 0.5455	 0.4603	 0.0852	

ℎ 푥 ;휓 	 1.4852	 0.0879	 0.2364	 0.0347	 1.8502	 1.1202	 0.7300	

200 
푅 푥 ;휓 	 0.4641	 0.0004	 0.0421	 0.0003	 0.4989	 0.4292	 0.0697	

ℎ 푥 ;휓 	 1.2275	 0.0408	 0.1610	 0.0401	 1.6198	 0.8353	 0.7845	

500 

350 
푅 푥 ;휓 	 0.5045	 0.0026	 0.1119	 0.0003	 0.5401	 0.4689	 0.0712	

ℎ 푥 ;휓 	 1.4700	 0.0682	 0.2081	 0.0219	 1.7600	 1.1795	 0.5801	

500 
푅 푥 ;휓 	 0.4637	 0.0002	 0.0317	 0.0002	 0.4886	 0.4388	 0.0498	

ℎ 푥 ;휓 	 1.2047	 0.0274	 0.1319	 0.0249	 1.5141	 0.8953	 0.6188	
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Table 10 
ML averages, estimated risks, relative errors, variances and 95% ACIs of the 

rf and the hrf of AFWE-L distribution for different samples of size 푛 and 
푁푅 = 1000, (훼 = 0.8, 훽 = 0.5, 휆 = 0.5, 휃 = 0.5, 푥 = 0.4) 

풏 풓 퐫퐟 and 퐡퐫퐟 퐀퐯퐞퐫퐚퐠퐞 퐄퐑 퐑퐄 퐕퐚퐫퐢퐚퐧퐜퐞 퐔퐋 퐋퐋 퐋퐞퐧퐠퐭퐡 

30 

21 
푅 푥 ;휓 	 0.4704	 0.0036	 0.1187	 0.0025	 0.5692	 0.3717	 0.1698	

ℎ 푥 ;휓 	 2.6328	 0.9767	 0.3087	 0.6589	 4.2177	 1.0479	 3.1698	

30 
푅 푥 ;휓 	 0.4381	 0.0058	 0.1520	 0.0017	 0.5187	 0.3574	 0.1613	

ℎ 푥 ;휓 	 2.3984	 1.1910	 0.3409	 0.5470	 3.8481	 0.9488	 2.8993	

60 

42 
푅 푥 ;휓 	 0.4752	 0.0022	 0.0925	 0.0014	 0.5491	 0.4013	 0.1478	

ℎ 푥 ;휓 	 2.5664	 0.6280	 0.2476	 0.2254	 3.4969	 1.6359	 1.8610	

60 
푅 푥 ;휓 	 0.4415	 0.0045	 0.1341	 0.0008	 0.4981	 0.3850	 0.1131	

ℎ 푥 ;휓 	 2.3880	 0.9760	 0.3086	 0.3151	 3.4882	 1.2878	 2.2004	

100 

70 
푅 푥 ;휓 	 0.4768	 0.0015	 0.0771	 0.0009	 0.5339	 0.4197	 0.1141	

ℎ 푥 ;휓 	 2.5322	 0.5460	 0.2308	 0.0988	 3.1484	 1.9163	 1.2319	

100 
푅 푥 ;휓 	 0.4428	 0.0040	 0.1261	 0.0005	 0.4853	 0.4004	 0.0849	

ℎ 푥 ;휓 	 2.3374	 0.8374	 0.2859	 0.0917	 2.9309	 1.7498	 1.1871	

200 

140 
푅 푥 ;휓 	 0.4777	 0.0013	 0.0703	 0.0006	 0.5273	 0.4281	 0.0992	

ℎ 푥 ;휓 	 2.5170	 0.5187	 0.2250	 0.0510	 2.9594	 2.0746	 0.8848	

200 
푅 푥 ;휓 	 0.4441	 0.0036	 0.1196	 0.0002	 0.4726	 0.4155	 0.0571	

ℎ 푥 ;휓 	 2.2917	 0.8521	 0.2884	 0.0253	 2.6033	 1.9801	 0.6232	

500 

350 
푅 푥 ;휓 	 0.4781	 0.0010	 0.0636	 0.0004	 0.5188	 0.4373	 0.0814	

ℎ 푥 ;휓 	 2.4986	 0.5243	 0.2262	 0.0311	 2.8443	 2.1530	 0.6913	

500 
푅 푥 ;휓 	 0.4456	 0.0033	 0.1142	 0.0001	 0.4624	 0.4289	 0.0334	

ℎ 푥 ;휓 	 2.2832	 0.8500	 0.2880	 0.0077	 2.4552	 2.1112	 0.3440	

  
6. Applications 

 
This section is devoted to exhibit the applicability and flexibility of 

AFWE-L distribution for data modeling. Three applications on COVID-19 
data in some countries is used to demonstrate the superiority of AFWE-L 
distribution over some known distributions namely, L-W, NMW, AW, FWE 
and L distributions. ML estimates of the parameters, rf and the hrf based on 
two level of Type II censoring (30%, 0%) and their standard errors (SE), 
Kolmogorov-Smirnov (K-S) statistic and its corresponding p-value, the 
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−2log likelihood statistic (−2ℒ), Akaike information criterion (AIC), 
Bayesian information criterion (BIC) and corrected Akaike information 
criterion (CAIC) are used to compare the fit of the competitor distributions, 
where 

퐴퐼퐶 = 2푚 − 2ℒ, 퐵퐼퐶 = 푚 ln(푛) − 2ℒ	
and	

퐶퐴퐼퐶 = 퐴퐼퐶 + 2
푚(푚 + 1)
푛 − 푚 − 1 ,	

where  
ℒ is the natural logarithm of the value of the likelihood function evaluated at 
the ML estimates,  
푛 is the number of the observations and 푚 is the number of the estimated 
parameters. 
The best distribution corresponds to the lowest values of AIC, BIC and 
CAIC, also the highest p-value. 

 
6.1 Application 1 

 
This application is given by Mubarak and Almetwally (2021). The 
application represents COVID-19 data which belong to the United Kingdom 
of 76 days, from 15 April to 30 June 2020. The data are formed of drought 
mortality rates. The data are: 0.0587, 0.0863, 0.1165, 0.1247, 0.1277, 0.1303, 
0.1652, 0.2079, 0.2395, 0.2751, 0.2845, 0.2992, 0.3188, 0.3317, 0.3446, 
0.3553, 0.3622, 0.3926, 0.3926, 0.4110, 0.4633, 0.4690, 0.4954, 0.5139, 
0.5696, 0.5837, 0.6197, 0.6365, 0.7096, 0.7193, 0.7444, 0.8590, 1.0438, 
1.0602, 1.1305, 1.1468, 1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709, 
1.6017, 1.6083, 1.6324, 1.6998, 1.8164, 1.8392, 1.8721, 1.9844, 2.1360, 
2.3987, 2.4153, 2.5225, 2.7087, 2.7946, 3.3609, 3.3715, 3.7840, 3.9042, 
4.1969, 4.3451, 4.4627, 4.6477, 5.3664, 5.4500, 5.7522, 6.4241, 7.0657, 
7.4456, 8.2307, 9.6315, 10.1870, 11.1429, 11.2019 and 11.4584. 

 
Figure 4 displays the plot of the empirical scaled TTT-transform of COVID-
19 data of the United Kingdom, which implies that this data has a modified 
bathtub hazard function, boxplot and the histogram of the data. One can 
notice that this data is right-skewed. P-P plot, Q-Q plot and the fitted AFWE-
L distribution plots indicate that AFWE-L distribution provides a better fit to 
this data. 

 
Table 11 displays the K-S statistic and its corresponding p-value, −2ℒ 
statistic, AIC, BIC and CAIC and Table 12 presents the ML estimates of the 
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parameters, rf and hrf along with their SEs, under 0% and 30% levels of Type 
II censoring, for COVID-19 data of the United Kingdom. 

 
The empirical scaled TTT-transform plot 

 
 

Boxplot 

 

 

  

  
Figure 4: The empirical scaled TTT-transform plot, boxplot, histogram, 

P-P plot, Q-Q plot and the fitted pdf for COVID-19 data of the United 
Kingdom. 
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Table 11 

K-S statistics, P-values,−2ℒ, AIC, BIC and CAIC of the fitted models 
for COVID-19 data of the United Kingdom 

Model K-S P-value −ퟐ퓛 AIC BIC CAIC 

AFWE-L 0.0790	 0.9735	 280.4346 288.4346 297.7575 288.9980 

L-W 0.1316	 0.5291	 285.7349 293.7349 303.0579 294.2983 

NMW 0.1184	 0.6643	 338.8597 348.8597 360.5134 349.7169 

AW 0.1579	 0.3012	 415.7225 423.7225 433.0455 424.2859 

FWE 0.1447	 0.4050	 334.5277 338.5277 343.1892 338.6921 

L 0.1447	 0.4057	 297.1085 301.1085 305.7700 301.2729 
 

Table 12 
ML estimates and their relevant SEs of the fitted models 

for COVID-19 data of the United Kingdom 

 
6.2 Application 2 

 
This application is provided by Mubarak and Almetwally (2021). The 
application represents COVID-19 data which belong to Japan of 38 days, 

Level of censoring 흍, rf and hrf MLE SE 

0%	

훼	 0.1034	 4.5277e-5	
훽	 0.5030	 3.945e-5	
휆	 0.2190	 4.1068e-4	
휃	 0.0434	 8.7687e-5	

푅 푥;휓 	 0.7107	 4.2349e-5	

ℎ 푥; 휓 	 2.4842	 1.8367e-4	

30%	

훼	 0.0985	 2.7943e-5	
훽	 0.6212	 0.0023	
휆	 0.6901	 0.0084	
휃	 0.1553	 0.0020	

푅 푥;휓 	 0.7474	 7.5962e-4	

ℎ 푥; 휓 	 3.3368	 0.0165	
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from 4 September to 12 October 2020. The data is formed of drought 
mortality rates. The data are: 0.1596, 0.2733, 0.1142, 0.0851, 0.1976, 0.2243, 
0.1810, 0.0828, 0.1504, 0.2169, 0.0404, 0.1208, 0.1334, 0.1589, 0.1184, 
0.1698, 0.0648, 0.1027, 0.0511, 0.1019, 0.1520, 0.1006, 0.0624, 0.0372, 
0.1112, 0.0859, 0.0854, 0.0847, 0.1443, 0.0836, 0.0238, 0.0355,0.0353, 
0.0937, 0.0349, 0.0924, 0.0344 and 0.0228. 

 
The empirical scaled TTT-transform plot 

 
 

Boxplot 

 

  
 

  
Figure 5: The empirical scaled TTT-transform plot, boxplot, histogram, 
P-P plot, Q-Q plot and the fitted pdf for COVID-19 data of Japan. 
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Figure 5 shows the plot of the empirical scaled TTT-transform of COVID-19 
data of Japan, which indicates that this data has an increasing hazard function, 
the boxplot implies that this data is right skewed, the histogram of the data 
shows that this data is unimodal. The P-P plot, Q-Q plot and the fitted 
AFWE-L distribution plots indicate that AFWE-L distribution gives better fit 
for this data. 

 
Tables 13 presents the K-S statistic and its corresponding p-value, −2ℒ 
statistic, AIC, BIC and CAIC and Table 14 presents the ML estimates of the 
parameters, rf and hrf along with their SEs, under 0% and 30% levels of Type 
II censoring, for COVID-19 data of Japan. 

Table 13 
K-S statistics, P-values,−2ℒ, AIC, BIC and CAIC of the fitted models 

for COVID-19 data of Japan 
Model K-S P-value −ퟐ퓛 AIC BIC CAIC 

AFWE-L 0.1316	 0.9033	 -95.2786 -87.2786 -80.7283 -86.0665 

L-W 0.1579	 0.7379	 -82.0023 -74.0023 -67.4519 -72.7902 
NMW 0.1842	 0.5453	 -78.0422 -68.0422 -59.8543 -66.1692 

AW 0.2105	 0.3727	 -65.0143 -57.0143 -50.4640 -55.8022 

FWE 0.3684	 0.0109	 -58.9937 -54.9937 -51.7185 -54.6508 
L 0.2632	 0.1445	 -77.4367 -73.4367 -70.1615 -73.0938 

 
Table 14 

ML estimates and their relevant SEs of the fitted models 
for COVID-19 data of Japan 

Level of censoring 흍, rf and hrf MLE SE 

0%	

훼	 14.4886	 0.0664	
훽	 0.7426	 0.0065	
휆	 0.2609	 0.0030	
휃	 2.2023	 0.0283	

푅 푥; 휓 	 0.1825	 7.9325e-4	

ℎ 푥;휓 	 26.0360	 0.3424	

30%	

훼	 17.2038	 0.1964	
훽	 0.7113	 0.0080	
휆	 0.2473	 0.0037	
휃	 1.9928	 0.0318	

푅 푥; 휓 	 0.1260	 0.0010	
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6.3 Application 3 

 
This application is given by Liu et al. (2021). In this application the survival 
times of patients suffering from the COVID-19 epidemic in China are 
considered. The data represent the survival times of patients from the time 
admitted to the hospital until death. Among them, a group of 53 COVID-19 
patients were found in critical condition in hospital from January to February 
2020. Among them, 37 patients (70%) were men and 16 women (30%), 40 
patients (75%) were diagnosed with chronic diseases, especially including 
high blood pressure, and diabetes, 47 patients (88%) had common clinical 
symptoms of the flu, 42 patients (81%) were coughing, 37 (69%) were short 
of breath, and 28 patients (53%) had fatigue. 50 (95%) patients had bilateral 
pneumonia showed by the chest computed tomographic scans.  

 
The data are: 0.054, 0.064, 0.704, 0.816, 0.235, 0.976, 0.865, 0.364, 0.479, 
0.568, 0.352, 0.978, 0.787, 0.976, 0.087, 0.548, 0.796, 0.458, 0.087, 0.437, 
0.421, 1.978, 1.756, 2.089, 2.643, 2.869, 3.867, 3.890, 3.543, 3.079, 3.646, 
3.348, 4.093, 4.092, 4.190, 4.237, 5.028, 5.083, 6.174, 6.743, 7.274, 7.058, 
8.273, 9.324, 10.827, 11.282, 13.324, 14.278, 15.287, 16.978, 17.209, 19.092 
and 20.083.  

 
Figure 6 presents the plot of the empirical scaled TTT-transform of COVID-
19 data of China, which indicates that this data has a bathtub hazard function, 
boxplot and the histogram of the data show that this data is right-skewed. The 
P-P plot, Q-Q plot and the fitted AFWE-L distribution plots implies that 
AFWE-L distribution presents better fit for this data. 

 
Tables 15 displays the K-S statistic and its corresponding p-value, −2ℒ 
statistic, AIC, BIC and CAIC and Table 16 presents the ML estimates of the 
parameters, rf and hrf of AFWE-L distribution along with their SEs, under 
0% and 30% levels of Type II censoring, for COVID-19 data of China. 

 

ℎ 푥;휓 	 18.8154	 0.2120	
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The empirical scaled TTT-transform plot 

 
 

Boxplot 

 

  
 

  
Figure 6: The empirical scaled TTT-transform plot, Boxplot, P-P plot, 

Q-Q plot and the histogram and the fitted AFWE-L distribution for COVID-
19 data of the China 
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Table 15 
K-S statistics, P-values,−2ℒ, AIC, BIC and CAIC of the fitted models 

for COVID-19 data of China 
Model K-S P-value −ퟐ퓛 AIC BIC CAIC 

AFWE-L 0.0943	 0.9747	 268.5411 276.5411 284.4223 277.3745 

L-W 0.1509	 0.5861	 279.0068 287.0068 294.8880 287.8401 

NMW 0.2264	 0.1317	 302.7820 312.7820 322.6334 314.0586 

AW 0.1132	 0.8898	 313.3504 321.3504 329.2316 322.1838 

FWE 0.1132	 0.8907	 279.2810 283.2810 287.2216 283.5210 

L 0.2453	 0.0815	 295.8015 299.8015 303.7420 300.0415 

 
Table 16 

ML estimates and their relevant SEs of the fitted models 
for COVID-19 data of China 

  
 

Level of censoring 흍, rf and hrf MLE SE 

0%	

훼	 0.0526	 5.0006e-5	

훽	 3.6678	 0.0063	

휆	 0.3888	 0.0021	

휃	 0.2198	 5.7627e-4	

푅 푥; 휓 	 0.8559	 1.4027e-4	

ℎ 푥;휓 	 23.2526	 0.0395	

30%	

훼	 0.0465	 9.5686e-5	

훽	 3.5952	 0.0111	

휆	 0.4269	 0.0020	

휃	 0.2291	 5.7361e-4	

푅 푥; 휓 	 0.8594	 1.0782e-4	

ℎ 푥;휓 	 22.7908	 0.0695	
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Concluding remarks: 
 

 AFWE-L distribution has the lowest K-S values and the highest p-values 
for the three applications. Thus, it provides the best fit for these data 
compared to the other competitors of distributions. 

 Moreover, the AFWE-L distribution has the smallest values of the −2ℒ 
statistic, AIC, BIC and CAIC, which imply that the proposed model is 
the best among the other competitors of distributions (L-W, NMW, AW, 
FWE and L). 

 
 The ML estimates of the parameters, rf and hrf of AFWE-L distribution 

have smaller SEs for the case of the complete samples (0% level of 
censoring) comparing to the case of censored samples (30% level of 
censoring). This returns to the amount of lost information through the 
censoring. 

  
7. Conclusion 

 
In this paper, a new four-parameter competing risks model, called AFWE-L 
distribution is introduced by combining the FWE distribution and the L 
distribution in a series system. AFWE-L distribution has high flexibility and 
diversity in the shapes of the pdf as well as the hrf. Several statistical 
properties of the proposed model are derived. The ML method is used to 
estimate the model parameters, rf and hrf based on Type II censored samples. 
Moreover, simulation study is conducted to evaluate the performance of the 
ML estimates of AFWE-L distribution parameters, rf and hrf. AFWE-L 
distribution is the best fitting among many known distributions to three real 
applications on COVID-19 data in some countries. 
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9. Appendix 

 
I. The mode 

 
The mode of AFWE-L distribution can be obtained by differentiating the pdf 
in (7) with respect to 푥 and equating to zero as follows:  

푓 푥 ;휓 = 0.	
Since 
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푓 푥;휓 = ℎ 푥;휓 푅 푥; 휓 = ℎ 푥;휓 푒 ; ,	

where 퐻 푥;휓  is the chrf defined in (10), then,   

푓 푥;휓 = ℎ 푥;휓 −
휕
휕푥퐻 푥;휓 푅 푥; 휓

+
휕
휕푥 ℎ 푥; 휓 푅 푥;휓 ,																																											(A1) 

where 
휕
휕푥퐻 푥; 휓 = ℎ 푥;휓 ,	
and 
휕
휕푥 ℎ 푥;휓 = ℎ 푥; 휓 . 
	
Hence,	(A1) can be written as 
 
푓 푥;휓 = ℎ 푥;휓 − ℎ 푥; 휓 푅 푥; 휓 ,																																				(A2)	
where 

ℎ 푥;휓 = 훼 +
훽
푥 −

2훽
푥 푒 −

휃
휆 1 +

푥
휆 ,	

ℎ 푥; 휓 = 훼 +
훽
푥 푒 +

휃
휆 1 +

푥
휆

−
2휃
휆 훼 +

훽
푥 1 +

푥
휆 푒 . 

	
Therefore, equating (A2) to zero, one can obtain the following nonlinear 
equation 

훼 +
훽
푥

1 − 푒 −
2훽
푥

+
2휃
휆 훼 +

훽
푥

1 +
푥
휆

× 푒 − (휃 + 1)
휃
휆 1 +

푥
휆 = 0.															(A3)	

Equation (A3) is a nonlinear equation, which can be solved numerically to 
obtain the mode of AFWE-L distribution. 

 
II. The 풓풕풉 non-central moment 

 
Since 

휇 = 푥 푓 푥; 휓 푑푥 = − 푥 푑푅 푥; 휓 .	
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Using integration by parts, then  

휇 = 푟푥 푅 푥;휓 푑푥 = 푟푥 푒 1 +
푥
휆 푑푥 .	

Since the power series expansion of 푒 is as follows:  

휇 =
(−1)
푖! 푟푥 푒 1 +

푥
휆 푑푥 ,	

By using the power series expansion of 푒  and 푒 , then 
  

휇 =
(−1) 	푖 	훼 	훽 	푟

푖! 푗! 푘! 푥 1 +
푥
휆 푑푥 .	

Using integration by substitution, then,  
 

휇 =
(−1) 	푖 	훼 	훽 	

푖! 푗! 푘! 푟	휆

× 횩 푟 + 푗 − 푘, 휃 − (푟 + 푗 − 푘) ,	
where 

0 < 푟 + 푗 − 푘 < 휃. 
 
III. The asymptotic Fisher information matrix 

 
The asymptotic Fisher information of AFWE-L distribution is given by  

퐼 휓 ≃ 퐼 ,																															푖, 푗 = 1,2,3,4,													(A4)	
where 

퐼 = −
휕 ℓ
휕훼 = −

ℎ 푥( ); 휓 ℎ 푥( ); 휓 − ℎ 푥( ); 휓

ℎ 푥( ); 휓

+ 푥( )푒
( ) ( ) + (푛 − 푟)푥( )푒

( ) ( ) ,	

퐼 = −
휕 ℓ
휕훼휕훽 = −

ℎ 푥( ); 휓 ℎ 푥( ); 휓 − ℎ 푥( ); 휓

ℎ 푥( ); 휓

− 푒 ( ) ( ) − (푛 − 푟)푒 ( ) ( ) ,	
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퐼 = −
휕 ℓ
휕훼휕휆 =

ℎ 푥( ); 휓 ℎ 푥( ); 휓

ℎ 푥( ); 휓
, 

퐼 = −
휕 ℓ
휕훼휕휃 =

ℎ 푥( ); 휓 ℎ 푥( ); 휓

ℎ 푥( ); 휓
,	

퐼 = −
휕 ℓ
휕훽 = −

ℎ 푥( ); 휓 ℎ 푥( );휓 − ℎ 푥( ); 휓

ℎ 푥( ); 휓

+
1
푥( )

푒 ( ) ( ) +
(푛 − 푟)
푥( )

푒 ( ) ( ) ,	

퐼 = −
휕 ℓ
휕훽휕휆 =

ℎ 푥( ); 휓 ℎ 푥( ); 휓

ℎ 푥( );휓
, 

퐼 = −
휕 ℓ
휕훽휕휃 =

ℎ 푥( );휓 ℎ 푥( ); 휓

ℎ 푥( );휓
, 

퐼 = −
휕 ℓ
휕휆 = −

ℎ 푥( ); 휓 ℎ 푥( ); 휓 − ℎ 푥( ); 휓

ℎ 푥( ); 휓

+
휃
휆

푥( ) 2 +
푥( )
휆

1 +
푥( )
휆

+
휃(푛 − 푟)

휆
푥( ) 2 +

푥( )
휆

1 +
푥( )
휆

,	

퐼 = −
휕 ℓ
휕휆휕휃 = −

ℎ 푥( ); 휓 ℎ 푥( ); 휓 − ℎ 푥( ); 휓

ℎ 푥( ); 휓

−
1
휆

푥( )
1 +

푥( )
휆

−
(푛 − 푟)
휆

푥( )

1 +
푥( )
휆

,	

and 

퐼 = −
휕 ℓ
휕휃 =

ℎ 푥( ); 휓

ℎ 푥( ); 휓
,	

where 
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–  

ℎ 푥( ); 휓 =
휕 ℎ 푥( ); 휓

휕훼 =
휕ℎ 푥( ); 휓

휕훼

= 푥( ) 훼 +
훽
푥( )

푒 ( ) ( ) + 2푥( )푒
( ) ( ) ,	

ℎ 푥( ); 휓 =
휕ℎ 푥( ); 휓

휕훽 = − 훼 +
훽
푥( )

푒 ( ) ( ) ,	

ℎ 푥( ); 휓 =
휕 ℎ 푥( ); 휓

휕훽 =
휕ℎ 푥( ); 휓

휕훽

=
1
푥( )

훼 +
훽
푥( )

푒 ( ) ( ) −
2
푥( )

푒 ( ) ( ) ,	

ℎ 푥( ); 휓 =
휕 ℎ 푥( ); 휓

휕휆 =
휕ℎ 푥( ); 휓

휕휆 =
2휃

휆 1 +
푥( )
휆

,	

and 

ℎ 푥( ); 휓 =
휕ℎ 푥( ); 휓

휕휃 =
−1

휆 1 +
푥( )
휆

. 

 
IV. The delta method 

 
Using the delta method, the asymptotic variances of 푅 푥; 휓  and ℎ 푥; 휓  
can be derived , respectively, by:  

푣푎푟 푅 푥;휓 = 휉퐼 휓 휉 , 

푣푎푟 ℎ 푥;휓 = 휂́퐼 휓 휂 , 

where 
휉 = 푅 푥; 휓 푅 푥; 휓 푅 푥; 휓 푅 푥;휓  is the first partial 
differentiation of the rf with respect to 훼, 훽, 휆 and 휃 and   
휂́ = ℎ 푥;휓 ℎ 푥; 휓 ℎ 푥; 휓 ℎ 푥; 휓  is the first partial 
differentiation of the rf with respect to 훼, 훽, 휆 and 휃, where  

푅 푥;휓 =
휕푅 푥;휓

휕훼 = −푥푒 푒 , 
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–  

푅 푥; 휓 =
휕푅 푥; 휓

휕훽 =
1
푥 푒 푒 , 

푅 푥; 휓 =
휕푅 푥; 휓

휕휆 = −
휃푥
휆 1 +

푥
휆

( )

, 

푅 푥;휓 =
휕푅 푥;휓

휕휆 = − 1 +
푥
휆 ln 1 +

푥
휆 , 

ℎ 푥; 휓 =
휕ℎ 푥;휓

휕훼 = 푥 훼 +
훽
푥 푒 + 푒 ,	

ℎ 푥;휓 =
휕ℎ 푥; 휓

휕훽 =
1
푥 푒 −

1
푥 훼 +

훽
푥 푒 ,	

ℎ 푥;휓 =
휕ℎ 푥; 휓

휕휆 = −
휃

휆 1 + 푥
휆

,	

and 

ℎ 푥; 휓 =
휕ℎ 푥;휓

휕휃 =
1

휆 1 + 푥
휆
. 


