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Abstract:  
In this paper, the matrix technique is employed to attain 
transient solution of a finite capacity multi-servers Markovian 
queue having discouraged arrivals, retention and reneging of 
reneged customers. We consider the cases where both service 
times and the inter-arrival follow the exponential distribution. 
The time dependent solution of the system is expressed by using 
the eigenvalues of a symmetric tridiagonal matrix. As a reneged 
customer can be preserved in a lot of cases by utilizing definite 
convincing mechanisms to keep on queue for completion of 
service, it follows that a reneged customer can keep hold of the 
queuing system with chanceq . Otherwise, customer may leave 
the queue without getting a service with probability 
p ( p +q =1). Laplace transforms of governing equations system 
are expressed in matrix forms. Moreover, employing the 
characteristics of symmetric tridiagonal matrices, and the steady 
state probabilities are gained. Finally, some queuing models are 
derived as special cases of this system. 
Keyword: Reneging, retention of reneged customers, transient 
solution, Discouraged arrivals. 
1- Introduction 
The study of a finite waiting space queuing systems is very 
demanding and important since these systems represent a 
commonly observed type of systems in queuing theory. 
Therefore, many researchers have studied queuing systems with 
a finite waiting capacity.  For example, Sumeet and Rakesh [1] 
studied a feedback Markovian queue having retention of reneged 
customers in steady–state. Chandrika [2] investigated transient 
queue system with dependent servers and controllable arrivals. 
Kumar and Sharma[3] successfully obtained the steady state 
solution of queuing model with discouraged arrivals, reneging 
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and retention of reneged customers. Also, the cost and profit 
function are acquired. Thiagarajan and Premalatha [4] examined 
single–server infinite waiting space simple queue with balking, 
retention of reneged customers and feedback. 
The transient solution of finite capacity single-server queue is 
studied by Al-Seedy et al. [5] via employing the matrix 
techniques. Furthermore, the case of Transient behavior of an  

/ / 1 /M M N queue with multiple working breakdowns is 
considered by Yang and Wu[6]. Jain and Bura [7] examined the 
effect of varying catastrophic intensity with restoration by 
utilizing a simple finite capacity Markovian queue with capacity 
N. The time dependent analysis of a single–server queue having 
constant-size batch arrivals is analyzed by Oduol and Ardil [8] 
whereas the analysis of transient solution of a two-
heterogeneous servers queue having impatient concepts is 
carried out by S. Ammar [9].Kumar and Sharma [10]studied the 
optimization of a simple queue with feedback and retention of 
reneged customers. Also, the optimization problem of 
an / / 1 /M M N queuing system possessing impatient customers, 
variable input rates, and different service rates is solved by Pan 
[11]. Majewska [12] considered Analysis and optimization of 
queuing system with  impatient customers. Tian et al. [13] 
considered the optimal balking behavior of customers in an 
M/G/1 queuing system having a removable server under N-
policy. Finite capacity multi-server queuing systems investigated 
numerically by Kumar and Sharma[14]. Moreover, Kumar [15] 
considered the behaviors of multi-server Markovian queuing 
models including balking and catastrophes via utilizing the 
probability generating function scheme. 
In this paper, time dependent and steady state results are 
obtained for the  
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 multi- servers queue having discouraged arrivals, reneging, and 
retention of reneged customers using matrix technique. 
2- Model description 
Assume that we have an / / /M M c N queue with reneging, 
retention of reneged customers and discouraged arrivals. Capacity 
of this system is considered finite, say .N  Customers are 
supposed to arrive at service station in a one by one fashion 
according to Poisson stream with arrival rate n . The arrival rate 
is dependent on the  customers number that is present in the 

system at time i.e. n n  , 1 , , 1,..., 1
( 1) 1n n c c N
n c

    
  

 

but 1, 0,1,..., 1n n c    and 0N  .  
There is a multi-servers, denoted by c servers, which provides 
service to all arriving customers. Service times are independent 
and identical exponential distribution random variables with 
queue parameter  . Note that queue discipline is of first-in , first 
out(FIFO) type. The customer in queue, for regular arrival case, 
may be impatient when the required service is not accessible for a 
considerable time T. This long time T is a random variable having 
the following probability distribution: ( ) , 0, 0,tf t e t     
where  is the rate of time T. Also, T is reneging time of a 
particular customer after which customer either choose to leave 
the queue with probability p ( p +q =1) or never to return with 
complementary probability. 
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3- Governing Equations 
Assume that ( )np t is the probability that the system size 
equals n ( 0,1,...,n N ) at time ,t .Also, assume that the empty 
system is starting with i customers (the system size at 0t  ). 
The system is governed by the following set of differential-
difference equations: 

0 0 0 1 1( ) ( ) ( )P t P t P t                                                              (1) 

1 1 1 1( ) ( ) ( ) ( ) ( ),1 1n n n n n n n nP t P t P t P t n c                (2) 

1 1 1 1( ) ( ) ( ) ( ) ( ), 1n n n n n n n nP t P t P t P t c n N               (3) 

1 1( ) ( ) ( ),N N N N NP t P t P t n N                       (4) 

Where:  
,0 1

, 1
( ) 2

n

n c

c n N
n c


 

  
      

,    
,1 1

( ) ,n

n n c
c n c p c n N



 

  
     

 

The Laplace transform of the differential difference equations (1)-(4) 
are expressed as 
  * *

0 0 1 1 0( ) ( ) , 0is P s P s n                        (5) 
* * *

1 1 1 1( ) ( ) ( ) ( ) , 1 1n n n n n n n ins P s P s P s n c                (6)  
* * *

1 1 1 1( ) ( ) ( ) ( ) , 1n n n n n n n ins P s P s P s c n N                (7) 
* *

1 1( ) ( ) ( ) (0),N N N N Ns P s P s P      n N                         (8) 
The equations (5)-(8) can be 
given in the following matrix 
form: 
 
where 

 * * *
0 1( ) ( ), ( ),..., ( )

T

NP s P s P s P s ,   0 1(0) , , ..., ,T
i i iNP     

and (0)n inp   ( in is the usual Kronecker delta), 

( ) ( ) (0),A s P s P
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and the Laplace transform of the probability ( )nP t  

is *

0

( ) ( ) .st
n nP s e P t dt


   

The matrix ( )A s with order 1N  is expressed as follows 

0 1

0 1 1 2

1 2 2 3

2 3 3

1 1

1

0 0... 0 0
0... 0 0

0 ... 0 0
0 0 ... 0 0
. . . . . . ,
. . . . . .
. . . . . .
0 0 0 0...
0 0 0 0...

N N N

N N

s
s

s
s

s
s

 
   

   
  

  
 
 



  
     
    
 

   
 
 
 
 
 
   
   

As ( )A s  is similar to a symmetric tri-diagonal matrix, then its 
eigenvalues are real. 

Employing some basic row and column transformations on 
( )A s , ( ) ( )A s s M s is hold, where ( )M s is an order N  

symmetric tri-diagonal matrix with negative off diagonal 
elements. Matrix ( )M s is written as 
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0 1 1 1

1 1 1 2 2 2

2 2 2 3 3 3

3 3 3 4

2 1 1 1

1 1 1

0 0... 0 0

0... 0 0

0 ... 0 0

0 0 ... 0 0
. . . . . .
. . . . . .
. . . . . .

0 0 0 0...

0 0 0 0...
N N N N

N N N N

s

s

s

s

s

s

  

   

   

  

   

   
   

  

   
 
    
 

    
 

   
 
 
 
 
 
    
     

Notice that the solutions of equation ( )M s =0 are the negative 
eigenvalues of the matrix ( )M s . Since the matrix M is positive 
definite( i . i >0), real and symmetric, the eigenvalues of M are 
distinct, real and positive. Moreover, the roots of the polynomial 

( )A s  are distinct, real and negative. Denote these roots 
by 0 1( 0), ,..., ,Ns s s then we get: 

1( ) ( )...( )NA s s s s s s   and 

1*

1

( )
( )

( )...( )
n

n
N

A s
p s

s s s s s


 
,                                                                             

(9) 
where 1( )nA s  is the determinants of the matrix attained via 
replacing the ( 1n  )th column of ( )A s with the column vector (0)P . 
Assume ( )rT s and ( )rB s are the determinants of the top left and 
bottom right r r submatrices extracted from the matrix ( )A s . 
Therefore, the following recurrence relations are satisfied by 
determinants ( )rT s  and ( )rB s  
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1 1 1 1 2( ) ( ) ( ) 0, 2,3,...,r N r r N r N r rB s a B s b c B s r N            

1 1 2 2 2( ) ( ) ( ) 0, 2,3,...,r r r r r rT s a T s b c T s r N        , 

For the next initial conditions 
0 1 0 1 0( ) 1, ( ) , ( ) 1, ( ) .NB s B s a T s T s a     

where:  
( 1) , 0,1,..., 1
[ ( 1) ], ,...,i

i i c
b

c i c p i c N


 
  

     
,  

, 0,1,..., 2

, 1,..., 1
2

i

i c
c

i c N
i c



 

 
    

, and  

0

1

1

, 0
, 1,..., 1

,
i i i

N

s c i
a s c b i N

s b i N




 
    
  

. 

Now, the expression of 1( )nA s  in terms of ( )rT s  and ( )rB s is to be 
obtained. 
For n i , the value of n belongs to one of the following intervals: 

(i) 0 n c   
(ii) c n N   
Thus, at 0 ,n c  we have 

1( ) ( ) ( ), 0 .n i
n i N nA s T s B s i n 
         (10) 

Moreover, for ,c n N   
1

1 1

( ) ( ), 0
( )

( ) ( ), .

n
c i

i k N n
k c

n n

i N n
k i

T s B s i c
A s

T s B s c i N

 






 





 

 
  




   (11) 



 

  
36 

–    

 
Hence for ,n i n can be assigned to one of the following intervals: 

(i) 0 n c   
(ii) c n N   

The form of 1( )nA s is given by 

for 0 ,n c   

1 1

!( ) ( ),
!( )

!( ) ( ), ,
!

i n
n N i

n i
c n

n k N i
k c

iT s B s n i c
nA s
cT s B s c i N
n



 




 





   
  



    (12) 

and for ,c n N   
1

1( ) ( ) ( ), .
i

n n k N i
k n

A s T s B s n i N


 


          (13) 

From Equation (9) and using partial fraction, we derive that 
,*

1

( ) ,
N

n kn
n

k k

dpp s
s s s

 
                 (14) 

where 
*

0
( )limn n

s
p s p s



 ,        *
, ( ) ( ).lim

k

n k k n
s s

d s s p s


   

By inverting the Laplace transforms of equation (14), we acquire 
the following expression in the time domain 

,
1

( ) k

N
s t

n n n k
k

p t p d e


                                                    (15) 

4-Steady state probabilities 
Define np as the equilibrium probability of n  customers exist in the 
system. Then from equation (7) we have:  

1*

0

0

(0)
( ) , 0,1,...

( )
lim n

n n N
s

i
i

A
p s p s n N

s







  


.                    (16) 
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From the aforementioned formula of ( )rT s , ( )rB s and the difference 
equations, we can obtain 

(0)
!

n

nT
n


 , 
1

(0)
N n

N n k
K

B 





 and 0 (0) 1T  . 

For  0n  , 1
0

0

(0)

( )
N

i
i

A
p

s





 1
0

1

(0)
, 0,1,...

(0)
n

n

A
p p n N

A
  ,      (17) 

1 1 1
0 0

1 0 0 1 1

(0) (0) . .... (0)
,

(0) (0) . ... (0)
n n n n i N i

n
i N i

A T b b b B
p p p n i

A T b b b B
   

 

   ,          (18) 

0

0

1

;1
!

; 1 .

! ( 1)! [ ( ) ]

n

n

n
n

nc

k c

p n c
n

p c n Np
c n c c k c p





  

 


 

   
    




   (19) 

Using (10), (12), (13) and (16) it is concluded that the formula in 
(19) is independent of the initial size of system i .The result in (19) 
agrees with that in Thiagarajanand  Premalatha [4]. 
Placing the expressions of  np , 0,1,...,n N , in normalized 
equation, the expression for 0p are determined as follows 

1
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1 1 1

1 11
! ! ( 1)! ( )

k k kc N

k c
k k c j c

p
k c k c c j c p
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 
       

   .  (20) 

5- Expected queue length for customers 
Let ( )Q t be the random variable denoting queue size 
where  ( )E Q t refers to its expected value. Then,  
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 (21) 
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6- Special Cases  
1- In the above described model taking 1, 0 1,c p   and t  , 
we shall reach to an / /1/M M N queueing system having  
reneging and retention of reneged customers as studied  by 
Kumaret al. [ 16 ]. 
2- Whent  the queueing system transformed into 
an / / /M M c N queueing model in steady state with discouraged 
arrivals, reneging and retention of reneged customers the result 
agrees with those presented by Kumarand Sharma  [14]. 
3-Setting 1( 0, 0), 1,p q c    and t  the model will be 
approached which would be the system / /1/M M N  without any 
concepts. 
7- Numerical illustrations of the model 
In this part, some numerical values for a virtual model are 
considered where  the transient expected value of queue size as 
function of the time t is computed. Furthermore, the transient 
expected value of queue length for t values is illustrated in figure 1. 
From the plotted figure it is obvious that the model gets to the 
steady state at point 2t  . The transient expected value of queue 
length for 2t  equivalents with the steady state value of it. In 
figure 2 noted that the transient expected value of queue size of the 
model increases with increasing the  values and decreases with 
value of  .In figure 3 empty transient probability is decreasing 
with increasing value of  .  
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Figure 1. The expected value of queue length for different times 

are plotted for the case  
0.2, 3, 0.4, 5, 2, 4, 15.c p i N          
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 Figure 2.Variation of the expected value of queue length for 
different values of arrival rate and service rate at time point equal 5 
for the values 0.2, 0.4, 5, , 5p i t     and 15.N   
 

 

Figure 3. P0(t) versus t for different values of  
 
8- Conclusion 
This work examines a multi- servers queuing system having 
retention of reneged customers and discouraged arrivals. The time 
dependent solution and steady state are obtained in explicit form by 
using a computable matrix technique. Special cases of queueing 
models are derived for this model. From the plotted figure it is 
found that the system attains the value of steady state at time 2t  , 
the transient expected value of queue size of the model decreases 
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with increasing the values of  . Also, The empty transient 
probability  P0(t) is decreasing with increasing value of  .  
  
Appendix: 
From the identities of tridiagonal determinants Muir and Metzler 
[17] is:  

0 0

1 1 1 1

1 1 1

.
.
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b A a b a
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where 1 , 1, 2, ....., .i i ig A a b i n     
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