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Abstract 

        This article introduces the review of literature for Kumaraswamy-generalized 

distribution as a general class; we review the most fields which covered for 

Kumaraswamy-generalized distribution. The new general class distribution can have a 

decreasing and upside-down bathtub failure rate function depending on the value of 

its parameters; it's including the Kumaraswamy-generalized Gamma distribution, 

some special sub-model depending on the original form. The Kumaraswamy-

generalized Pareto distribution. On generalized order statistics from Kumaraswamy 

distribution.  Some structural properties of the proposed distribution are reviewed, 

including explicit expressions for the moments, order statistics and their moments. 

The most methods of estimation are covered. 

Keywords: Kumaraswamy-generalized distribution, Kumaraswamy-generalized 

Gamma distribution, Kumaraswamy-generalized Pareto distribution, maximum 

likelihood estimation, hazard rate function, order statistics. Moment generating 

function. 

1 - Introduction 

     The theory of compound distributions is well known and frequently used in 

various scientific disciplines. In particular, it has useful applications in industrial 

reliability and medical survivorship analysis. The modeling and analysis of lifetimes 

is an important aspect of statistical work in a wide variety of scientific and 

technological fields. In this proposal, we introduce the new general class of compound 
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distributions which supported us with new families of distributions and sub-models. 

The new distributions can have a decreasing and upside-down bathtub failure rate 

function depending on the values of its parameters. 

      For the new general class, we present the family of Kumaraswamy 

generalized (denoted with the prefix “Kw-G” for short) distributions 

introduced by Cordeiro and de Castro (2011)[11]. Nadarajah et al. (2011)[56] 

studied some mathematical properties of this family. The Kumaraswamy 

(Kw-G) distribution is not very common among statisticians and has been 

little explored in the literature. It does not seem to be very familiar to 

statisticians and has not been investigated systematically in much detail 

before, nor has its relative interchangeability with the beta distribution been 

widely appreciated. However, in a very recent paper, Jones (2009)[34] 

explored the background and genesis of this distribution and, more 

importantly, made clear some similarities and differences between the beta 

and Kw distributions. The Kumaraswamy Generalized (Kw-G) distribution, 

which stems from the following general construction, if G denotes the 

baseline cumulative function of a random variable, then a generalized class of 

distributions can be defined by 
 

                                               (1.1) 
 

where  and   are two additional shape parameters which govern 

skewness and tail weights, the Kw-G distribution can be used quite effectively even if 

the data are censored. Correspondingly, its density function is distributions has a very 

simple form  

                              (1.2) 

 

     The density family (1.2) has many of the same properties of the class of 

beta-G distributions (see Eugene and Famoye (2002))[21], but has some 

advantages in terms of tractability, since it does not involve any special 

function such as the beta function. Equivalently, as occurs with the beta-G 
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family of distributions, special Kw-G distributions can be generated as 

follows: the Kw-normal distribution is obtained by taking G(t) in (1.1) to be 

the normal cumulative function. Analogously, the Kw-Weibull (Cordeiro et 

al. (2010)[12]), Kw-generalized gamma (Pascoa et al. [2011][50]), and Kw-
Gumbel (Cordeiro et al. (2012)[55].) distributions are obtained by taking G(t) 

to be the cdf of the Weibull, generalized gamma, Birnbaum-Saunders and 
Gumbel distributions, respectively, among several others. Hence, each new 

Kw-G distribution can be generated from a specified G distribution. 

Nadarajah and Eljabri (2013) [57]  have proposed the mathematical properties 

of the GP distribution. Espa (2009)[5] obtain, the joint distribution, 

distribution of product and distribution of ratio of two generalized order 

statistics from Kumaraswamy distribution.   

1.1 Review of Literature 
     Kumaraswamy (1980)[38] introduced his now eponymous distribution, 

originally called double-bounded distribution, as an alternative to the beta 

distribution. They have the same real parameters,  the same 

support and similar shapes, but the Kumaraswamy distribution function, 

unlike the beta distribution function, has a closed algebraic form. Is has been 

found both more accurately fitting hydrological data in simulations 

[Kumaraswamy, 1980[38]] and computationally more tractable [Jones, 

2009][34]. The similarity between the two classes can be formalized. It is 

known and easy to see that, if random variable  is Kumaraswamy-

distributed with parameters   and , then  is beta distributed with  

and same . 

          The probability density function (pdf) and its cumulative (cdf) respectively  

              (1.3) 

               (1.4) 
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          In hydrology and related areas, the Kum distribution has received considerable 

interest, see Sundar and Subbiah (1989)[68], Fletcher and Ponnambalam (1996)[23], 

Seifi et al. (2000)[64] and Ganji et al. (2006)[24]. According to Nadarajah (2008)[54], 

many papers  In the hydrological literature have used this distribution because it is 

demand as a "better alternative " to the beta distribution, see, for example, 

Koutsoyiannis and Xanthopoulos (1989)[37].  

         Jones (2008)[33] illustrated that the kumaraswamy distribution has some 

properties like the beta distribution such as both densities are unimodal, uniantimodal, 

increasing, and decreasing or constant depending on the values of its parameters. 

Also, Jones (2008)[33] highlighted several advantages of  Kw distribution over beta 

distribution, the Kw distribution much simpler to use especially simulation studies 

due to the simple closed form of both its cumulative distribution function and quantile 

function, the normalizing constant is very simple, simple explicit formula for the 

distribution and quantile function which do not involve any special functions, a 

simple formula for random variable generation, Explicit formula for L-moments and 

simpler for moments of order statistics. Further, he mentioned that the beta 

distribution has the following advantages over th Kw distribution, simpler formula for 

moments and moment generating function; a one parameter sub-family of symmetric 

distributions, simpler moment estimation and more ways of generating the 

distribution via physical processes. 

        The family of Kumaraswamy generalized (denoted with the prefix “Kw-G” for 

short) distributions introduced by Cordeiro and de Castro (2011)[11]. Nadarajah et al. 

(2011)[56]studied some mathematical properties of this family. The Kumaraswamy 

(Kw) distribution is not very common among statisticians and has been little explored 

in the literature. However, in a very recent paper, Jones (2009)[34] explored the 

background and genesis of this distribution and, more importantly, made clear some 

similarities and differences between the beta and Kw distributions. The 

Kumaraswamy Generalized (Kw-G) distribution, which stems from the following 

general construction, if G denotes the baseline cumulative function of a random 

variable, then a generalized class of distributions can be defined by 
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                                               (1.5) 

where  and   are two additional shape parameters which govern 

Skewness and tail weights, the Kw-G distribution can be used quite effectively even if 

the data are censored. Correspondingly, its density function is distributions has a very 

simple form  

                              (1.6) 

         The density family (1.4) has many of the same properties of the class of 

beta-G distributions (see Eugene and Famoye (2002)[21]), but has some 

advantages in terms of tractability, since it does not involve any special 

function such as the beta function. Equivalently, as occurs with the beta-G 

family of distributions, special Kw-G distributions can be generated as 

follows: the Kw-normal distribution is obtained by taking G(t) in (1.5) to be 

the normal cumulative function. Analogously, the Kw-Weibull (Cordeiro et 

al. (2010)[12]), Kw-generalized gamma (Pascoa et al. [2011][50]), and Kw-

Gumbel (Cordeiro et al. (2011)[11].) distributions are obtained by taking G(x) 

to be the cdf of the Weibull, generalized gamma, Birnbaum-Saunders and 

Gumbel distributions, respectively, among several others. Hence, each new 

Kw-G distribution can be generated from a specified G distribution. 

Nadarajah and Eljabri (2013)[57] have proposed the mathematical properties 

of the GP distribution. Espa (2009)[5] obtain, the joint distribution, 

distribution of product and distribution of ratio of two generalized order 

statistics from Kumaraswamy distribution.   

1.2 The Reliability Function 

        According to Meeker and Escobar (1998)[51] the stress-strength model describe 

the life of a component which has a random strength 1X that is subjected to a random 

stress 2X  
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       The  component  fails  at  the  instant  that  the  stress  applied to it exceeds 

strength, and the component will function satisfactorily whenever  1 2X X , so 

2 1Pr( )R X X  is a measure of component reliability. 

       The definition of reliability, when 1X  and 2X are independent random variables 

belonging to the same univariate family of distributions, is  

1 2( ). ( )R f x F x dx




   

Where 

1( )f x : is the pdf of for the random variable 1X . 

2 ( )F x : is the cdf of distribution the random variable 2X . 

       Reliability has many applications especially in engineering concepts such as 

structures, deterioration of rocket motors, static fatigue of ceramic components, 

fatigue failure of aircraft structures, and the aging of concrete pressure vessels, in 

the area of stress-strength models. 

1.2.1 Hazard Function of the class of Kw-G Distributions 
          Cordeiro et al. (2010a)[12] obtained Hazard function of the class of Kw-G 

distributions where the survival function is expressed by 

( ) 1 ( )S x F x  substituting from equation (1.5) into the last equation, yields: 

                                     (1( ) )a bS G tx                                                 (1.7) 

            Furthermore, the hazard function is expressed by 

                                 ( )( )
( )

f xH x
S x

                                                               (1.8) 

           Substituting from (1.6) and (1.7) into the last equation, yields: 
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   

 

1 1 ( ) (1 )
(1 )

( )
a a b

a b

ab g t G t G t
G

H x
t

 


                                 (1.9)                  

then  

                                  
 

 

1  ( ) 
(

(1 )
)

a

a

ab g t G
t

H x
t

G




                                                             (1. 10)                                                              

 

 

 

 

 

Figure 1: plots of hazard function for The Kumaraswamy Generalized Half-Normal Distributio 

 

                        Figure 2: plots of The Kumaraswamy Pareto hazard function for som parameter value 

1-3 A General Expansions For The Density Function 
Cordeiro et al. (2010 a)[12] derived an expansion from equation (1.2) as follows: For 

b>0 real non-integer, the series representation be used  
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(1.11) 
Where the binomial coefficient is defined for any real, from the above expansions and 

formula (1.2) the density function of the class of Kw-G distributions van be written as  

 

 
Where,  

 
 

1-4 General Formula for moments 

       Cordeiro et al. (2010)[12] expressed the sth moments for the class of Kw-G 

distributions as an infinite weighted sum of Probability weighted moments of order 

(s,i) for the parent distribution G from equation (2) for a integer and from (1.4) , (1.5) 

for a real non-integer. We assume Y and X following the baseline G and the class of 

Kw-G distributions, respectively. The sth moment of X, say  , can be expressed in 

terms of the (s,k)th Probability weighted moments, as:  

 Of Y for k=0, 1, …                                                          (1.12) 

General formula for moments.  If a is integer:   Cordeiro  et  al.  

(2010)[12] Derived general formula for moments when a is integer from the fact that 

 

Substituting from (4) into  , yields 

                                                       (1.13) 
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From probability weighted moment's definition: 

                                                                                      (1.14) 

Hence  

 

1-5 Order Statistics of the class of Kw-G distributions: 

     Moments of order statistics play an important role in quality control 

testing and reliability, where a practitioner needs to predict the failure of 

future items based on the times of a few early failures. These predictors are 

often based on moments of order statistics. We now derive an explicit 

expression for the density function of the  order statistic , say  in 

a random sample of size n from the Kw-GP distribution. We can write 

                                                                 

(1.15) 
Where  , are the pdf and cdf of the Kw-GP distribution, by using 

binomial expansion of , yields 

                                                

(1.16) 
An expansion for the density of order statistics of the class of Kw-G distributions is 

presented as a function of baseline density multiplied by infinite weighted sums of 

powers for G(t). This results enables us to derive ordinary moments of order 

statistics of the class of Kw-G Distribution as infinite weighted sums of probability 

weighted moments for the G distribution. 



 

–  ٢٠١٩  

 
 

  
 

 
 

١٩٥ 
 

2- Some Special Distributions of Kumaraswamy Distributions 

2.1 The Kumaraswamy-Generalized Gamma Distribution 
           The Kumaraswamy-Generalized Gamma(Kum-GG) Distribution was 

introduced by Marcelino A. R. Pascoa et al (2011)[50; they are discussed in their 

paper an expression for the sth moment, properties of the hazard function, and 

results for the distribution of the sum of Kum-GG random variables, maximum 

likelihood estimation and some asymptotic results. 

Let ),,;( ktG be the cdf of the GG distribution (Stacy, 1962) [66] given by  

)(
])/(,[),,;(

k
tkktG





    

Where α > 0, τ > 0 , k > 0 ,  
x

kxk
0

-1 d e ),(   is the incomplete gamma function 

 and  Γ(.)  is the  gamma  function . Basic  properties  of  the   GG distribution are  

given by  Stacy  and Mihran (1967)[66]  and  Lawless ( 1980[40] , 2003[41] ). Some 

important distributions that are special sub-models of the GG distribution in the 

following table   

Distribution  τ α k 

Gamma 1 α k 

Chi-square 1 2 2/n  

Exponential 1 α 1 

Weibull C α 1 

Rayleigh 2 α 1 

Maxwell 2 α 2/3  

Folded normal 2 2  2/1  

The cdf of the Kum GG distribution can be defined by substituting  ),,;( ktG   into 

equation (1.5). Hence, The density function of the Kum-GG distribution (Cordeiro 

and Castro, 2011)[11] is given by 
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(2.1) 

Where , Here,  is the incomplete gamma ratio 

function defined by,   i.e. the cdf of the standard gamma 

distribution with parameter  

  

  

igure 3 :plots of the density function of the Ku-GG distribution with different shape values 

If  T  is  a  random  variable  with  density  function   (2.1),  we  write  T~ KumGG 
(α,τ,k,a,b). The survival and hazard rate functions corresponding to (2.1) are                
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( ) ( )
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1 ( 1)( )  1
( ) ( ) !
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k k j j

 






 



         
                         (2.2)    

and                                                                                                          
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(2.3)                                                                                                               
             respectively. Plots of  the KumGG density and survival rate function for 

selected parameter values are given i n following figures (4)                 

   

Figure 4: (a) plots of the the Ku-GG survival function for some value of a. 

(b) Plots of the the Ku-GG survival function for some value of b.  
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Figure 5:  KumGG hazard rate function. 

(a) The distribution has a bathtub hazard rate function. 

(b) The distribution has an unimodal hazard rate function.          

 (c) The distribution has increasing, decreasing hazard rate function. 

 Special Distribution 2.2 
        The following well-known and new distributions are special sub-models of the 
KumGG distribution. 

2.2.1 Exponantiated Generalized Gamma distribution  

If  b=1, the KumGG distribution reduces to  
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                                                                                                                         (2.4) 

Which is the exponentiated generalized gamma (EGG) density introduced by 

Cordeiro et al.(2009)[13]. If τ=b=1 in addition to k=1, the special cases corresponds to 

the exponentiated exponential (EE) distribution proposed by Gupta and Kundu 

(1999[27], 2001[26]). If τ=2 in addition to k=b=1, the special case becomes the 

generalized Rayleigh (GR) distribution (Kundu and Raqab, 2005) [39].   

 2.2.2   Kum-Weibull distribution (Cordeiro and Castro, 2010)     

For k=1, equation (2.1) yields  

 

                                                                                                                            (2.5) 

Which is the Kum- Weibull (KumW) distribution If b = k = 1, it reduces to the 

exponentiated Weibull (EW) distribution (see, Mudholkar et al., 1995[52], 1996[53]). If 

b = a = k =1, (2.1) becomes the Weibull distribution.  If  = 2 and k = 1, we obtain the 

Kum-Rayleigh (KumR) distribution. If k =   = 1, we obtain the Kum-exponential 

(KumE) distribution. If   b = λ = k =1 we obtain two important special sub- models:  

the exponential ( =1) and Rayleigh ( =2) distributions, respectively. 

2.2.3 Kum-Gamma distribution (Cordeiro and Castro, 2010) 

For = 1, the KumGG distribution reduces to 

 

                                                                                                                                 (2.6) 
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Which is the four parameter Kum- Gamma (KumG4) distribution.   If 1   b  we 

obtain the exponentiated gamma (EG3) distribution with three parameters.   If    

1               b ,   the special case corresponds to   the exponentiated gamma (EG2) 

distribution with two parameters. Further, if k = 1, we obtain the Kum- Gamma 

distribution with one parameter. If we take 1,     ab the special case corresponds 

to the two parameter gamma distribution.  In   addition, if   k = 1, we obtain the one 

parameter gamma distribution.                                                 

2.2.4   Kum-Chi-Square distribution 

If we take ,  and  , the density is given by 

                                                                                                              (2.7) 
 
     Which is the Kum-Chi-Square (Kum-Chi) distribution, If 1 b ,  

and  , we obtain the exponentiated-chi-square (E-Chi) distribution. If 

1    ab , in addition to  and , we obtain the well-known chi-

square distribution. 
 

2.2.5   Kum-Scaled Chi-Square distribution 

If we take ,  and k  , the density is given by 
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Which is the Kum-Scaled Chi-Square (KumSChi) distribution. For 1   b ,  

 2   , we obtain the exponentiated scaled chi-square (ESChi) distribution. 
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If 1   ab , in addition to  1,2    and , the special case coincides with 

the scaled chi-square (SChi) distribution. 

2.2.6   Kum-Maxwell distribution 

If we take ,  and k  , the density is given by 
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                                                                                                                       (2.9) 

      Which is the Kum-Maxwell (KumMa) distribution. For    2, ,ab  , and 

  , we obtain the exponentiated Maxwell (EM) distribution. If 1 ab in 

addition to   ,  , it reduces to the Maxwell (Ma) distribution (see, 

for example, Bekker and  Roux, 2005) [.6] 

2.2.7   Kum-Nakagami distribution 

If we take ,   and   , the density is given by 
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                                                                                                                             (2.10) 

Which is the Kum-Nakagami (KumNa) distribution. For b=1, τ=2,       

   and 

k=µ, we obtain the exponentiated Nakagami (EM) distribution. If b=a=1, in addition 

to 

  ,  τ=2  and  k=µ,  the  special  case  corresponds  to  the  Nakagami  (Na) 

distribution (see,for example, Shankar et al.2001)[65]. 
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2.2.8  Kum-Generalized Half-Normal distribution   

 If τ=2γ,  ,k and 2 2
12

1

   the KumGG distribution becomes  
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                                                                                                                             (2.11) 
Which is referred to as the Kum-generalized half-normal (KumGHN) distribution. For 

b=1, τ=2γ,  ,k and 2 2
12

1

   we obtain the exponentiated generalized half-normal 

(EGHN) distribution. For ,2k , 2 2
1

   we obtain the Kum-half normal 

(KumHN) distribution. If b=1, ,k and 2,2 2
12

1

  the reduced model is colled 

the exponentiated half-normal (EHN) distribution. If b=a=1, in addition to 

,2k ,2 , 2 2
1

    the reduced model becomes the generalized half-normal 

(GHN) distribution introduced by Cooray and Ananda (2008)[10]. Further, if b=a=1in 

addition to 2
1k ,2 , 2 2

1

  , it reduces to the well-known half-normal (HN) 

distribution.  
    2.3-Moments  
          We hardly need to emphasize the necessity and importance of moments in 

any statistical analysis especially in applied work. Some of the most important 

features and characteristics of a distribution can be studied through moments (e.g., 

tendency, dispersion, skewness and kurtosis).In this section, we give two different 

expansions for determining the moments of the KumGG distribution. Let 



 

–  ٢٠١٩  

 
 

  
 

 
 

٢٠٣ 
 

)( r
r TE  be the thr ordinary moment of the KumGG distribution. First, we obtain 

an infinite sum representation for r  from equation (2.1). The thr  moment of the 

GG (α, β, k) distribution is  
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For b=1 and j=0, we obtain the same result as in Cordeiro et al. (2009)[13]. For  

calculating  the  last  integral,  using  the  series  expansion  for the incomplete 

gamma function yields.                                                                                  
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This  integral  can  be  determined  from  equations  (24)  and  (25)  of Nadarajah 

(2008b)[54] in terms of the Lauricella function of type A (Exton, 1978[22];  Aarset, 

0987[1]) defined by                                              
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                                                                                                                      (2.13) 

where ia)( is the ascending factorial defined by (with the convention that 0)(a=1)    

( ) ( 1 ) . . . ( 1 )ia a a a i    

Numerical routines for the direct computation of the lauricella function of type A are 

available, see Exton (1978)[22] and Mathematica Trott (2006)[69].   We obtain       
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                                                                                                                               (2.14) 

The moments of the KumGG distribution in (2.4) are the main results of this section. 

Graphical representation of the skewness and kurtosis when α=0.5, τ=0.08 and k=3, as 

a function of a for selected values of b, and as a function of b for some choices of a, 

are given in figures 4 and 5, respectively.  

 
 Figure 6: Skewness and kurtosis of the KumGG distribution as a function of the parameter a for 

selected values of b.                                 
2.4 Moment Generating Function                                    
        Let T be a random variable having the KummGG(α,τ,k,a,b) density function 

(2.1). We now derive a closed form expression for the mgf, say M(s)=E[exp(sT)], of 

T. First, we obtain the mgf of the GG(α,τ,k) distribution. We have                                                                 
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   setting u = t , we obtain         
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Expanding the exponential in Taylor series, we have                                
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         where                                                                                         
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Figures 5: Skewness and kurtosis of the parameter as a function of the parameter b for selected values 

of a. 
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                               Maximum Likelihood Estimation2.5 
       Let Ti be a random variable following (2.1) with the vector of parameters 

.),,,,( Tbak   The data encountered in survival analysis and reliability studies 

are often censored. A very simple random censoring mechanism that is often realistic 

is one in which each individual i is assumed to have a lifetime Ti and a censoring time 

Ci, where Ti and Ci are independent random variables. Suppose that the data consist of 

n independent observations it = min (Ti , Ci) for i=1,…,n . The censored log-

likelihood )(l for the model parameters is  
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where r is the number of failures and F and C denote the uncensored and censored sets 

of   observations, respectively.  The score   components      corresponding to the   

parameters in θ are given by                                    
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Marcelino A. R. Pascoa et al (2011)[50]. 

           For interval estimation and hypothesis tests on the model parameters, we 

require the 55 unit observed information matrix  
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the MLE ̂  of   is obtained numerically from the nonlinear equations  
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          Under conditions that are fulfilled for parameters in the interior of the 

parameter space but not on the boundary, the asymptotic distribution of  

))(,0(   )ˆ( 1
5

  INisn where )(I  is the unit expected information matrix. This 

approximated distribution holds when )(I  is replaced by )ˆ(J , i.e., the observed 

information matrix evaluated at ̂ .The multivariate normal 5N (0, 1)ˆ( J ) distribution 
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can be used to construct approximate confidence intervals for the interval with 
significance  level  γ  for  each  parameter  r  is given by  
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                                                                                                                            (2.19) 

where rrj  ,ˆ  is the estimated thr diagonal element of 1)ˆ( J  for r =1,…,5 and 2/z  is 

the quantile 1- 2/  of the standard normal distribution. 

   The likelihoods ratio (LR) statistic is useful for testing goodness-of-fit of the 

KumGG distribution and for comparing it with some of its special sub-models (see 

section 3). We can compute the maximum values of the 

unrestricted and restricted long-likelihoods to construct LR statistics for  

testing some sub-models of the Kum GG distribution. For example, we may use the 

LR statistic to check if the fit using the Kum GG distribution is statistically "superior" 

to a fit using the Kum GHN, KumSChi, GG and KumW distributions for a given data 

set. In any case, hypothesis tests of the type 00 :  H  versus 0:  H  where 0 is 

a specified vector, can be performed using any of the above three asymptotically 

equivalent statistic. For example, the test of 1:0 bH  versus 0: HH  not true is 

equivalent to compare the EGG distribution with the Kum GG distribution for which 

the Lr statistic reduces to  

  1,~,,~,~(ˆ,ˆ,ˆ,ˆ,ˆ2 akbakw      where ak ˆ,ˆ,ˆ,ˆ  and b̂ are the MLEs under H 

and k̂,ˆ,ˆ  and â are the estimates under 0H .   

 

 

           

3-The Kumaraswamy Generalized Pareto Distribution 
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Introduction 3.1   

The generalized Pareto (GP) distribution is the most widely applied  

model for univariate extreme values. Possible applications cover most a reas of science 

engineering and medicine. Some published applications are: lifetime data analysis, 

coupon collector’s problem, analysis of radio audience data, analysis of rainfall time 

series, comparing time series, comparing investment risk between Chinese and American 

stock markets, regional flood frequency analysis, drought modeling, value 

at risk, analysis of turbine steady- state second- order material property closures, wind 

extremes, analysis of a Spanish motor  liability insurance database,  analysis 

of finite bu�erqueues, river flow modeling,  measuring  liquidity risk of open-end 

funds, modeling of extreme earthquake events, estimation of the 

maximum inclusion size in clean steels, and modeling of high- concent-Rations 

in short-range atmospheric dispersion.  

For details on the GP distribution, its theory and further applicationswe  

refer  the  readers  to  Leadbetter et al. (1987)[42],  Embrechts et al (1997)[20] , 

 Castillo et al. (2005)[9],  and  Resnick  (2008)[62]. 

However, the GP distribution has been misused in too many areas, as can  

be seen from the list given. It does not give adequate fits inmany areas. For   

example,  Madsen and osbjerg (1998)[48]   find hat  the  GP  distribution  does   not   

give   due to a good fit to drough a good fit to drought  deficit volumes  many small 

drought events, Joshi (2010)[35]  finds 

“Both plots indicate that the(exponential), Pareto, and Gpd (generalized  

Pareto distributions)  are a poor fit”.                                              

          The GP distribution has been widely used  to model lifetimes: 

see, for example, Mahmoudi (2011)[49].                          

 The Kum-exponential distribution has been used to model lifetimes, 

  see Cordeiro et al. (2010)[12]. 

      There are other ways to generalize the GP distribution. The 

most recent generalizations of the GP distribution were proposed by 
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Papastathopoulos and Tawn (2013)[58]. They referred to their generalizations  

as EGP1, EGP2 and EGP3 distributions.  

The EGP1 distribution is specified by the cumulative distribution function                 
          

 
                                                                                                             (3.1)  

 

for  x  >  0    (if  ξ  ≥   0),  0 < x ≤  −σ/ξ  (if ξ < 0), σ > 0, κ > 0 and   −∞ 

 < ξ < ∞, where   Bx(·, ·)    denotes   the  incomplete   beta  

function defined by 

 
and B(·, ·)  denotes the beta function defined by 

The  EGP2  distribution  is 

 specified by the  cumulative  distribution 

 function    
    (3.2)  

 

for x > 0    (if ξ ≥  0),    0 < x ≤  −σ/ξ    (if ξ < 0),    σ > 0, κ > 0   and 

 −∞ < ξ < ∞, where  Bx(·, ·)    denotes  the  incomplete -  beta function defined by 

  
and γ(·, ·)  denotes the incomplete gamma function defined by 

 

 

The   EGP3  distribution  is  specified  by  the  cumulative distribution function 



 

–  ٢٠١٩  

 
 

  
 

 
 

٢١١ 
 

  
3.3).( 

         
For  x > 0   (if ξ ≥  0),   0 < x ≤  −σ/ξ   (if ξ < 0),   σ > 0,   κ  >  0   and  −∞ 

 <  ξ   <  ∞. 
 
             Unfortunately,  none  of  the distributions  given  by  (3.1)  - (3.3)  are  new.  

There  have   been   many   published   papers   ( possibly  in  hundreds)  proposing  

distributions same  as (3.1)  -  (3.3)  or  containing  (3.1)  -  (3.3) as special cases. 

Besides,  the  distributions  given  by  Papastathopoulos and Tawn (2013)[56] appear 

complicated: at least   (3.1) and  (3.2) involve  the incomplete beta  function    and 

 the  incomplete  gamma  function ,  special functions 

  requiring numerical routines.                         

    now  explain  why  the  distributions  given  by   (3.1) -(3.3)   are  not  

new.  Firstly,  (3.1)  is   a  special   case   of   the  class  

  of  beta -  G distributions  introduced by  Eugene  et  al. (2002)[21]  and  

 followed  by  Jones  (2004)[32]   and   many  others.  The  beta -  G 

  distribution is specified bythe  cumulative distribution function                                   

                                              

      (3.4)   

 for  a  >  0 and  b  

> 0. Note that (3.1) is a special case of (3.4) for G(·)  specified by             

 
     
This special case is considered in detail by Akinsete et al.(2008, Section 2.2),Mah

moudi (2011)[49] and many others. Secondly, (3.2) is  a specia l case of  the class  of 

gamma- G distributions  introduced by Zografos and Balakrishnan (2009)[7 4] and 
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followed  by  Ristic  and Balakrishnan(2012)[63],  Nadarajah et al.  (2012)[55] and 

many  others. The  gamma  –  G  distribution   is   specified  by   the   cumulative  

distribution function. 

 
(3.5) 

 
for a>0. Note that (3.2) is a special case of (3.5) for G(·) a GP 

cumulative  distribution  function. Furthermore,  the  formula  for  the 

cumulative  distribution  function  of  the  EGP2 distribution given in 

Papastathopoulos and Tawn (2013)[58]is not a valid cumulative distribution  function!    

Finally, (3.3)  is   identical  to  the exponentiated  Pareto  distribution studied by 

Afify(2010)[3]  and many others. 

Now, we study the mathematical properties of the KumGP    

 distribution.  From   now  on, we write the cumulative  distribution  

 function and the probability density function of the GP distribution by   
(3.6)                 u - 1  )(            , xG                   and 

(3.7)                                          

respectively, where u = {1+ξ(x−t)/σ}−1/ξ.  The  cumulative  distribu-tion 
 function  and  the  probability  density  function  of  the  KumGP  
distribution can be written as 

(3.8) and                  
                                    
                                    
    
    
    

   
(3.9)  
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respectively. The EGP3 distribution  given by (3.3) is a particular case  of  

the   Kum - GP distribution. Unlike  the  EGP1  and EGP2 

distributions,  the  Kum GP  distribution  does not  involve  special 

functions.  So,  one can expect  that the KumGP distribution could  

attract wider applicability than the EGP1, EGP2 and EGP3 distr i-  

 butions. 

The KumGP distribution  given  by  (3.9)  is much more flexible than the  

GP distribution and can allow for greater flexibility of tails. Plots of  the  probability 

density function in (3.9) for  some parameter 

values are densit y function  in  (3.9) for  some parameter values are 

  given in Figure 6.  
                                                                        

                             

 

 

Figure 6: Plots of (15) for u = 0, σ = 1, (a, b) = (0.5, 0.5) (solidcurve),     
(a, b) = (0.5, 1) (curve of dashes), (a, b) = (0.5, 3) (curve of dots) and (a, b) = 
(3, 3) (curve of dots and dashes)                                                                                  
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 If X is a random variable with probability density function, (3.9) we write  

X ∼ KumGP(a, b, σ, ξ). The KumGP quantile function is 

 obtained by inverting (3.8):   

 
3.10)(       

 
(So, one can generate KumGP variates from (16) by setting X = Q(U ), where U 

is a uniform variate on the unit interval (0, 1).                                      

Function sityDen Probability of Shape 3.2 
 

The first derivative of log{f (x)} for the KumGP distribution is: 
  

 
where u = {1 + ξ(x −  t) /σ}−1/ξ. So, the modes of f (x) are  the roots of the 
equation 

  

(3.11)  

 
     There may be more than one root to (3.11).  

Furthermore, the asymptotes of f (x)  and F (x) as u → 0, 1 are given by 

  
as u →1, 
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as u →

1. Note that both the upper and lower tails of f (x)  are polynomials with respect to 

 u. Larger values  of  a correspond  to heavier upper 

tails of f . Larger values of b correspond to lighter upper tails of f . 

Plots  of  the  shapes of (3.9) for t = 0, σ = 1 and selected values of (a, b, ξ)  are 

given in Figure 6.Both unimodal and monotonically decreasing shapes 

 appear  possible. Unimodal  shapes  appear  when  both  a and  b  are   

large. Monotonically decreasing shapes appear when either a or b is small. 

Function Rate Hazard of Shape 3.3  
  The hazard rate function defined by h(x) = f (x)/{1 −  F (x)} is an 

 important quantity characterizing   life  phenomena of  a  system. For   

the   KumGP distribution, h(x) takes the form 

(3.12)  
 
 
 

 
where u = {1 + ξ(x −  t) /σ}−1/ξ. The first derivative of log h(x) is: 

 

So, the modes of h(x) are t
he roots of the equation 

(3.13) 

There may be more than one root to (3.13). 

Furthermore, the asymptotes of h(x) as u → 0, 1 are given by         
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as u → 1. Note that both the upper and lower tails of h(x) are polynom-ials With  

respect  to  u. Larger values  of  a  correspond  to  lighter       

lower respect  to  u. Larger values  of  a  correspond  to lighter lower   

tails. Larger  values   of    b   correspond   to  heavier  lower  tails  and 

 heavier.   

 Figure 7 illustrates some of the possible shapes  of h(x) for  t = 0, σ= 1   and 

  selected   values   of     (  a,   b,   ξ ).  Both    monotonically    

 increasing, Monotonically  decreasing  and  bathtub   shapes   appear    

  possible.   Bathtub   shapes   appear   for   negative  values  of     ξ.   

Monotonically increasing shapes appear  when  both  a  and   b are 

 large. Monotonically decreasing shapes 

 appear when either a or b is small and ξ is not negative.                                                 
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Figure 7:Plots of (18) for u = 0, σ = 1, (a, b) = (0.5, 0.5) (solid curve),  
(a, b) = (0.5, 1) (curve of dashes), (a, b) = (0.5, 3) (curve of dots) and (a, b) = 
  (3, 3) (curve of dots and dashes) 

  

    Bathtub shaped hazard rates are the most realistic ones in practice.  It is 

interesting to note that the KumGP distribution can exhibit this 

 shape. The GP distribution cannot exhibit bathtub shaped hazard rates. 

Moments 3.4  
 

    Let X ∼ KumGP(a, b, σ, ξ). Using the transformation 
 
 u = {1+ξ(x− t) /σ}−1/ξ we can write 
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for n ≥  1 provided that 1 −  iξ is not an integer for all i = 0, 1, · · · , n.  

 The first four moments are: 
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provided that  1 −  ξ,  1 −  2ξ,  1 −  3ξ  and 1 −  4ξ  are  not   integers.  The 

infinite series in (3.14)-(3.18) all converge.  

   The expressions   given  by  ( 3.15 ) - ( 3.18)  can be used to compute the mean, 

 variance,  skewness  and  kurtosis  of  X. The  values  of  
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these four quantities versus  ξ  are  plotted  in Figure 3 for t = 0, 

 σ = 1 and selected values  of  (a, b).  It  is  evident  each   of   the 

 quantities is  an increasing function of ξ for all choices of (a, b). 

   

 

Figure 8: Mean, variance, skewness and kurtos versus ξ for t =0, 

σ= 1,   (a,b) =  (0.5, 1)    (curve of dashes), ( a,b ) = (0.5, 3)  

(curve of dots) and (a, b) = (3, 3) (curve of dots and dashes)  

Statistics  Order3.5 
 

Order statistics  make  their  appearance in many areas of statistical theory and  

practice. Let  X1:n <   X2:n  < · · · <  Xn:n denote the order 

Statistics  for  a random  sample X1, X2, · · · , Xn from (3.9). Then the 

probability density  function  of  the kth order statistic, say Y = Xk:n, 

 can be expressed as 
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where u= {1 + ξ(y −  t) /σ}−1/ξ and fa,b,σ,ξ( ·) denotes the probability density 

function of  Xa,b,σ,ξ  ∼  KumGP(a, b, σ, ξ). So, the probability  

density function of  Y is a  linear combination  of  probability density  

functions of KumGP(a, b, σ, ξ).  Hence,  other  properties  of  Y can be 

 easily derived. For  instance,  the cumulative  distribution  function  of Y 

can be expressed as 

 
where Fa,b,σ,ξ( ·) denotes the cumulative distribution function correspon-ding to 

fa,b,σ,ξ( ·). The qth moment of Y can be expressed as 

 

 

(3.19)  
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where Xa,b,σ,ξ ∼ KumGP(a, b, σ, ξ).  

L- moments are summary statistics  for probability distributions and data sam 

ples (Hoskings,  1990[31]). They are analogous to ordinary moments    

but are computed from linear functions  of the ordered data values. 

The rth L moment is defined by  

 

where  βj =  E{XF (X)j}.  In particular, λ1 =  β0,  λ2 = 2β1 −  β0, 

  λ3 = 6 β2 −  6β1 + β0 and  λ4 = 20 β3 –  30 β2 + 12 β1 −  β0.   In general, 

βr  =  (r + 1)−1  E(Xr+1: r+1),  so  it  can  be  computed  using  (3.19). 

 The L moments have several advantages over ordinary moments: for  

 example, they  apply  for any distribution  having  finite mean;  no 

 higher- order  moments need be finite. 
 

Estimation Likelihood Maximum 6.٣ 
 

Suppose x1, x2, · · · , xn is a random sample of size n from (3.9). Let ui = 

{ 1  +  ξ (xi  −  t)  / σ}−1/ξ   for  i =  1,  2, · · · ,  n. Then the log-  likelihood  

function  for  the  

vector  of  parameters (a, b, σ, ξ)  can  be  written  as 
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(3.20)   

order partial derivatives of (3.20) with respect to the four The first-     

 parameters are: 

The maximum likelihood estimates  of  (a,  b,  σ,  ξ), say (a, b, σ, ξ), are the 

 simultaneous  solutions  of  the  equations    ∂ log L / ∂a   =  0, 

∂ log L/∂b = 0, ∂ log L/∂σ = 0  and  ∂ log L/∂ ξ = 0.  

As n → ∞, )  - ˆ , - ˆ b, - b̂ a, - â ( n  
approaches a multi variate normal vector with zero means and variance- 

covariance matrix, −(EJ )−1, where 

 
The matrix, −EJ , is known as the expected information matrix.The matrix, 

−J , is known as the observed information matrix. In cases of more than one 

maximum, we took the maximum likelihood estimates to correspond to the 

largest of the maxima. 

In practice, n is finite. That it is best to approximate the distribution of 

 )-ˆ ,-ˆ b,-b̂ ,ˆ( aan  by a multivariate normal distribution with zero 

means and variance- covariance matrix given by –J-1 , inverse of the observed 

information matrix, with ) , b, ,( a replaced)ˆ ,ˆ ,b̂ ,ˆ( a. So, it is useful to have 

explicit expressions for the elements of J . 
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 The multivariate normal approximation can be used to construct 

approximate confidence intrvals and confidence regions for the individual 

parameters and for the hazard and survival functions.    

 
4-On Generalized Order Statistics from Kumaraswamy Distribution  

Introduction) 4.1(  

          The distribution of the Product and ratio of random variables find an important 

place in the literature and much work is done when the random variables are 

independent and come from a particular probability distribution.                                   

                                                                 

       If the random variables  X1,  X2,  …, Xn are arranged in ascending order of 

magnitudes and then written as  X(1) ≤  X(2) ≤  … ≤  X(n), then  X(i) is called the ith 

order statistic ( i = 1,2,…,n) and the order random variables are necessarily 

dependent. The distribution of product and quotient of the extreme order statistics and 

that of consecutive order statistics are useful in ranking and selection problems. 

Subrahmaniam(1970) [36] has made the study of product and quotient of order statistics 

from uniform distribution and exponential distribution , whereas Malik and 

Trudel(1976) [30] studied the cases when the order statistics are from Pareto, power 

and Weibull distribution , Recently Garg (2009) [47] has studied order Statistics from 

Kumaraswamy Distribution.                                                                                            

       

       The subject of  order statistics has been further generalized and the concept of  

generalized order statistics in introduced and studied by Kamps in a series of papers 

and books [70], [71], [72],[ 73]. The order Statistics, record values and sequential order 

statistics are special cases of generalized order Statistics. This concept is widely 

studied by many research workers namely Ahsanullah [43, 44, 45, 46],  AbEl-Baset, 

Ahmed and Al-Matrofi (2006)[2], Cramer and Kamps [14, 15], Cramer, Kamps and 
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Ryehlik (2002, 2002, 2002 , 2004)  [16, 17, 18, 19]  Hosking (1990) [31]  and Reiess(1989) 
[60].                 

      In the present paper we shall obtain the joint distribution,  distribution of product 

and distribution of ratio of two  generalized order statistics from the family of 

distribution known as Kumaraswamy Distribution(1980)[38].  

Definitions) 4.2( 

4.2.1 Generalized Order Statistics  

      Let F(x) denoted an absolutely continuous distribution function with density 

function  f(x) and  X1,n,m,k , X2,n,m,k , …, Xn;n,m,k  ( k ≥ 1, m is a real number ) be n 

generalized order statistics. Then the joint probability density function ( p. d .f ) 

),...,(
1,...,1 nn

xxf  can be written as Kamps (1995) [71]   

 

Where,                                                                                                   (4.1) 

dx
F(x) d  f(x)  and  1) (m j) -n  (  (     kj  

      If m = 0 and    k = 1 it gives the joint p. d. f. of n ordinary order statistics  X1,n ≤  

X2,n ≤  … ≤  Xn,n.  If m = -1 and   k = 1 it gives the joint p. d. f. of the first n upper 

records of the independent and identically distributed random variables. Various 

distributional properties of generalized order statistics are studied by Kamps (2001) 
[70] and that of record values by Ahsanullah (1995, 2000) [ 43,44], Arnold, Balakrishnan 

 and Nagaraja (1998) [4] and Raqab (2002) [61]. 



 

–  ٢٠١٩  

 
 

  
 

 
 

٢٢٥ 
 

Further integrating out x1,…,xr-1 , xr +1,…, xn from (4.1), we get p,d.f.  kmnrf ,,,  of  

 kmnrX ,,, [Kamps (1995) [71] ] as 

    )()()F(x-1 
)! 1-r (

C     (x) 11
r

r
,,, rr

r
mkmnr xfxFgf r                                          (4.2)  

Where 
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r

r

1j
     j            ,                                                       (4.3) 

  and  
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1
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1m

1lim 1

1
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We shal write 

   )1(1
1m

1   )( 1


 m
m xxgfor all (0,1)  x and for all m  

  With  

)(g  lim   )( m-1m1 xxg
                                                                                   (4.5) 

Also the joint distribution of of  ith and  jth generalized order statistics is given by  

(4.6)  
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       The result (4.6), on taking m=0 and k=1 reduces to the joint p. d. f. of ith and jth 

order statistics as given in David (1981) [28]. 

4.2.2 The Mellin Transform 
 Let (X1,X2) be a two dimension random variable having the joint probability

  density function f(x1,x2) that is positive in the first quadrant and zero 

elsewhere  The Mellintransform  of   f(x1,x2)  is  defined  by Fox (1957) [7] as 

 

with the inverse                                                                                     (4.7) 

 

                                                                                                             (4.8) 

under the appropriate conditions discussed by Fox. we are interested in 

the following two particular  cases K.Subrahmaniam (1970)[36].   

If Y =  X1  X2,  then h(y),  the p.d.f. of Y,  has the Mellin transform 

 and if ,/ 21 XXZ  then h(y),  the p.d.f.of Z,  has the Mellin transform  

)]([)]([ 2,, 21
zgMzgM ssss   

4-2-3   Fox-H-function  
We shall require the following definition of Fox (1961) [8]   H-function 

 

                                                                                                                                         (4.9) 

where }],arg{log[ xand riablecompelexva a is  0)x(,  1 s xxsExp    
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(4.10)                 

  

m, n, p and q are non-negative integers satisfying, ),...,1(q;m1  ,0 j pjpn   

and ),...,1( qjj  are assumed to be positive quantities for standardization purpose. 

        The definition of the H-function given by (4.9) will however have meaning even 
if some of these quantities are zero, giving us in tern simple transformation formulas. 

The nature of contour L, a set of sufficient conditions for the convergence of this 
integral, the asymptotic expansion, some of its properties and special cases can be 

referred to in the book by Srivastave, Gupta and Goyal (1982) [29]. 

4.2.4 Joint Distribution and Distributions of Product and Ratio of 

Two Generalized Order Statistics  

Therom1. 

Generalized order statistics with ( i <j)Let  j  and  i  be   and  thth
,,;,,; kmnjkmni XX Based 

on a random sample of size in from the Kumaraswamy distribution. The joint p.d.f.  

of   these generalized order statistics is giving by:  

  

  (4.11)       

provided that  a ,  b  > 0 ,   1  ≤  i  ≤   j  ≤  n,  m  is  a real   number , k   ≥  1 ,  0 
 ≤   x  i<  x  j≤  1  and   Cj  and  j  are  defined  by   (4.3). 

Therom2.  
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 Let    k  m, n,k  m, n,  :  and  : ji XX denote the thth ji  and   generalized order 

statistics from a random sample of size n drown from Kumaraswamy distribution 
defined by (1.3). Then the probability density function of the product  

 

                     (4.12)  

  

4.13)(   

  

are given by        

 

Where H[z] is the Fox H - function defined by   (4.10) and   j-i+  

(4.14) 
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ɭ1-l2>0, a >  0,  b > 0 ,  1  ≤  i <  j ≤  n,  k ≥ 1,  m  and  k  are  real  numbers and 

the  symbols (4.3).by  defined are C  and  jj 

The p.d.f. of the ratio i.e. ),(k ,,:, zh mnjiis  

  

(4.15) 

4.2.5 Special Cases 

1) If we take   a = b = 1 in thermo 1 and 2, we get the joint p.d.f. and p.d.f. of product 
and ratio of thth ji  and  generalized order statistics from uniform distribution.                

                                                                                                        

2) If we take  j  = i + 1 in thermo 1 and 2, we get the joint distribution and distribution 
of product and ratio of consecutive generalized order statistics based on a random 
sample of size n from the kumaraswamy distribution.                                                     

3) If we take  i = 1, j = n in thermo 1 and 2, we get the joint distribution and 
distribution of product and ratio of extreme generalized order statistics based on a 
random sample of size n from the kumaraswamy distribution.                                       

                             

4) If we take  n to be add say 2p +1 then putting   i =  p +1 and j = 2p +1 in thermo 2, 
we get the p.d.f. of the product and ratio of peak to median of a random sample of size 
2 p + 1 of generalized order statistics as Remark. If we take  m=0 and k=1 in theorems 
1 and 2, then generalized order statistics reduces into order ststistics and we get the 
joint distribution and distribution of product and ratio of order statistics nn,, X and niX  

from a sample of size n from Kumaraswamy distribution as obtained resently by the 
Garg (2009) [47].  
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   توزیع كوماراسوامي المعمم:ملخص

 أحد   وباستخدام ،   المعمم  كوماراسوامي  لتوزیع  السابقة  الدراسات  المرجعي  البحث  ھذا یقدم

التوزیعات المعروفة كتوزیع جاما وتوزیع باریتو في صیغة توزیع كوماراسوامي المعمم یمكن 

الحصول على توزیعات معممة جدیدة لھا خصائص جدیدة كدالة معدل الفشل والتي تعتمد على 

 المعلما  الجدیدقیم  المعمم  حالات خاصة .ت للتوزیع  المعمم  كوماراسوامي جاما ویتضمن توزیع

لتوزیعات معممة أخرى، وكذلك أیضا توزیع كوماراسوامي باریتو المعمم یتضمن حالات خاصة 

 أخرى  معممة  كوماراسوامي .لتوزیعات  لتوزیع  الترتیبیة  الإحصاءات  أیضا  الدراسة وتتضمن

 .تخدام طرق التقدیرالمعمم ودراسة خصائصھ باس

 

                                                             

 

 

 

 


