Comparison of Different Statistical Models for Forecasting Exchange Rate of Somali Shilling Against US Dollar

نوع المستند : المقالة الأصلية

المؤلفون

کلية التجارة بنين بالقاهرة - جامعة الأزهر - طريق النصر - أمام قاعة المؤتمرات - مدينة نصر - القاهرة الرقم البريدي / 11751

المستخلص

The main goal of thispaper is to model and forecast the daily exchange rate of Somali Shilling (SOS) against United States Dollar (USD) over the period of 1st January 2009 to 31st December 2018 using Box-Jenkins models and Autoregressive Conditional Hetroskedasticity (ARCH) family models to compare between them and selected an appropriate one.Box-Jenkins models are employed for modeling and forecasting data using the steps of Box-Jenkins methodology.Additionally, non-normality, skewness, leptokurtosis, volatility clustering, and existence of ARCH effects in the residuals are observed in the data, therefore, ARCH family models which include ARCH, Generalized ARCH (GARCH), Exponential(EGARCH), and Threshold (TGARCH) are developed under three error distributions namely normal distribution, t-student distribution andGeneralized Error Distribution(GED). The empirical analysis has shown that ARMA(0, 6) is the most appropriate model for the estimated models using Akaike Information Criteria (AIC)  and Schwarz Information Criteria (SIC) as a selection criteria and also for the forecasted models usingRoot Mean Square Error (RMSE),Mean Absolute Error (MAE) andMean Absolute Percentage Error (MAPE) as forecasting accuracywhile estimating and forecasting the conditional variance of volatility models, it was found that ARCH(6) under t-student is the best model. After comparing between the models, the result declared that ARCH family models are superior to Box-Jenkins. Moreover, Diebold Mariano(1995) test is applied and revealed that the ARMA models and ARCH family models have same predictive ability whichimplies that the DM (1995) test does not prefer any model over the other.

الكلمات الرئيسية


  1. Abdalla, S. Z. S. (2012). Modelling exchange rate volatility using GARCH models: Empirical evidence from Arab countries. International Journal of Economics and Finance, 4(3), 216-229.doi:10.5539/ijef.v4n3p216
  2. Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series modeling and forecasting. LapLambert academic publishing, doi: 10.13140/2.1.2771.8084
  3. AlshawadfiGamal A. (2003) A comparison between neural network and Box Jenkins forecasting techniques with application to real data, King Saud University ,King Fahd National Library Cataloging-in-Publication Data .
  4. Box, G. E., Jenkins, G. M., Reinsel, G. C., &Ljung, G. M. (2016). Time series analysis: forecasting and control.Hoboken.
    1. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3),307-327.doi:10.1016/0304-4076(86)90063-1
  5. Brooks, C. (2014). Introductory Econometrics for Finance (3rd Edition). Camebridge.doi:10.1017/CBO9781139540872
  6. CBS (2017). Central Banka of Somalia. Retrieved fromhttps://centralbank.gov.so/wp-content/uploads/2020/03/annual-report-2017-Final-Version.pdf
  7. CBS (2012). Central Banka of Somalia. Retrieved from https://centralbank.gov.so/wp-content/uploads/2020/03/annual-report-2012-Final-Version.pdf
  8. Chatfield, C. (1975). The analysis of time series: theory and practice, No. 519.232 C4, doi:10.1007/978-1-4899-2925-9_10

10. Diebold, F., & Mariano, R. (1995). Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 13(3), 253-263. doi:10.2307/1392185

11. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 987-1007.doi: 10.2307/1912773

12. Epaphra, M. (2016). Modeling exchange rate volatility: Application of the GARCH and EGARCH models. Journal of Mathematical Finance, 7(1), 121-143.doi: 10.4236/jmf.2017.71007

13. Glosten, L. R., Jagannathan, R., &Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The journal of finance, 48(5), 1779-1801.doi:10.1111/j.1540-6261.1993.tb05128.x

14. Montgomery, D. C., Jennings, C. L., &Kulahci, M. (2008). Introduction to time series analysis and forecasting, John Wiley and Sons.

15. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica,Vol (59), 347-370.doi: 10.2307/2938260

16. Nor, M. I., Masron, T. A., &Alabdullah, T. T. Y. (2020). Macroeconomic Fundamentals and the Exchange Rate Volatility: Empirical Evidence from Somalia. SAGE Open, 10(1),doi:10.1177/2158244019898841

17. Pankratz, A. (1983). Forecasting with Univariate Box-Jenkins Models: Concepts and Cases. John Wily & Sons. Inc. USA.doi:10.1002/9780470316566

18. Sokhanvar, A. (2013). Application of time series models in forecasting exchange rate (Doctoral dissertation, Eastern Mediterranean University (EMU)-DoğuAkdenizÜniversitesi (DAÜ)).

19. Tsay, R. S. (2010). Analysis of Financial Time Series. John Wiley & Sons.doi:10.1002/9780470644560

20. Vee, D. C., Gonpot, P. N., &Sookia, N. (2011). Forecasting Volatility of USD/MUR Exchange Rate using a GARCH (1, 1) model with GED and Student’st errors. University of Mauritius research journal, 17(1), 1-14.doi:10.4314/umrj.v17i1.70728