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Abstract 

This paper is concerned with estimating the parameters of the 
finite mixture of two Weibull distributions based on record values. 
The Maximum likelihood and Bayes methods of estimation are 
used. Bayes estimates are obtained for the parameters of the 
mixture model based on beta conjugate prior for the proportion 
parameter and gamma conjugate priors for the shape parameters 
under squared-error loss function (as a symmetric loss function) 
and zero-one loss functions (as asymmetric loss functions) .The 
Bayes estimates are compared with their corresponding maximum 
likelihood estimates based on a Monte Carlo simulation study. 

Keywords Weibull distribution; Mixture; Record values; 
Maximum likelihood and Bayes estimation; Symmetric and 
asymmetric loss functions; Lindley approximation; Monte Carlo 
simulation. 

 

1. Introduction 
 The study of record values was introduced by Chandler 
(1952) and he documented many of the basic properties of 
records. Record values and the associated statistics are of interest 
and importance in many areas of real life applications involving 
data relating to industry, economics, biomedical sciences, 
engineering, the environmental sciences, actuarial sciences, 
management sciences, social sciences, athletic events, life testing, 
meteorology, hydrology, seismology and mining. Record values 
can be viewed as order statistics from a sample whose size is 
determined by the values and the order of occurrence of 
observations (for example the highest rate of the river floating, the 
highest score of players at many sports, the hottest day, the 
longest winning streak in professional basketball, the lowest stock 
market figure, …etc.). Records and associated statistics have been 
studied by Ahsanullah (1993, 1995) and  Arnold et al. 
(1992,1998).We encounter this notion frequently in daily life, 
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especially in singling out record values from a set of others and in 
registering and recalling record values. 

 Mixtures of lifetime distributions occur when two different 
causes of failure are present, each with the same parametric form 
of lifetime distributions. The finite mixtures of lifetime 
distributions have proved to be of considerable interest both in 
terms of their methodological development and practical 
applications, see McLachlan and Basford (1988), McLachlan and 
Peel (2000) and Abu-Zinadah (2010). Inferences on finite mixture 
models when the components belong to the same family were 
studied by Ahmad (1982), Amoh (1983), Al-Hussaini and Ahmad 
(1984), Al-Hussaini (1999), Al-Hussaini et al. (2000) and Jaheen 
(2005), among others. 

 Let X1, X2,… be a sequence of independent and identically 
distributed random variables. Set   

Ym = max(X1 , X2 ,…,Xm ) ,  .We denote Xj is an upper 
record value of the sequence {Xm ,  }, if Yj > Yj-1 , j >1. 
Upper record values can be transformed to lower record values by 
replacing the original sequence of random variables  by 

 or if by . The notation 
XU(m)  is used for the m th upper record value. 

 A random variable X is said to follow a finite mixture 
distribution with k components, if the probability density function 
of X can be written in the form: 

                                                              (1) 

where  is a non-negative real number ( known as the  j th mixing 
proportion) such that  and  is a density function 
(known as the j th component ), j = 1,2,…,k. 

 The probability density function (pdf) and the cumulative 
distribution function (cdf) of a mixture of two Weibull 
distributions are given by 
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,(2) 

 , (3) 

and                                              (4) 

where for  j =1,2,  ,  and  are the pdf , cdf 
and the reliability function of the Weibull distribution which are 
given respectively by 

,       (5)                  

, (6)    
.                    (7) 

We shall denote the vector of parameters of the mixture 
model . 

 The maximum likelihood estimates are obtained in Section 
2. In Section 3 the approximate form of Lindley is used for 
obtaining the Bayes estimates for the vector of parameters  

 of the finite mixture of two Weibull distributions 
based on upper record values under squared-error and zero-one 
loss functions. Bayes estimates are compared with their 
corresponding maximum likelihood estimates based on a Monte 
Carlo simulation study in Section 4. Concluding remarks are given 
in Section 5. 

 

2. Maximum Likelihood Estimation 
 Observing m upper record values 

 from a finite mixture of two 
Weibull distributions with the pdf given in equation (2). The 
likelihood function (LF) is given by  

( ; x) =      ,          (8) 
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where x = (    

The natural logarithm of the LF may be written as  

L( ; x ) =  ( ; x) = . (9) 

Differentiating L( ; x ) with respect to   , 
respectively, and then equating to zero, one can obtain the 
following likelihood equations: 

 =                                   (10)                                   

  =0 ,        (11)  

 = 0  , (12) 

where for j = 1, 2  and  i = 1, 2,…, m . 

        ,               . (13) 

       ,                               (14) 

     . (15) 

 To obtain the maximum likelihood estimate of the vector of 
parameters 

   , the system of nonlinear equations (10 -12) can be 
solved numerically. 

 

3. Bayes Estimation 
 Assuming that the parameters    are independent 
random variables, then the joint prior density of the random 
vector   is given by 

                  (16) 
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where for j=1, 2 ,  is a prior density of   and   is a 
prior density of   . 

 Let  Beta (a, b) and the gamma conjugate prior density 
with parameters  is chosen as a prior for   ,   j = 1, 2, 
with the following pdf 

                   ,             , (17) 

where for  j = 1, 2 ,   , 

and  

                  ,          (18) 

where a and b are real numbers.  

Hence the joint prior density of  is given by 

 ,  

                                                                                                        
0< <1, >0, > 0                        (19) 

where a, b, and  and   , j = 1,2 are real numbers. 

The joint prior density in equation (19) has been used by 
Al-Hussaini (1999) and is chosen such that it would be rich 
enough to cover the prior belief of the experimenter. 

The posterior density function of   given x is obtained by 
combining equations (8) and (19), and can be written as 

x)  
 .                        (20)                                                                                                      

3.1 Bayesian estimation under squared error loss function  

 Considering squared error loss function, the Bayesian 
estimator is the posterior mean of the corresponding posterior 
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density function and is given by a ratio of two integrals. Both 
integrals can’t be obtained in a simple closed form so numerical 
integration technique must be used, which can be computationally 
intensive, especially in high dimensional parameter space. Hence 
Lindley’s approximation (1980) is used to obtain the Bayes 
estimators. 

 Lindley (1980) showed that the approximate Bayes estimate 
of   about the posterior mode  is of the form  

 
+ ,                 (21) 

where for i, j, k =1,2,…,N,  

                                              ,                     

     ,                                (22) 

                                             ,                    

   ,                             (23) 

                      (24) 

where   is the logarithm of the posterior density .  

All functions in equations (21-24) are evaluated at  , the mode of 
the posterior density.                                                                                                                        

   This approximation form of Lindley has been used by many 
authors for obtaining Bayes estimators for the parameters of some 
lifetime distributions.   

   For three parameters Lindley’s approximation in (21) reduces to 
the following 

+  (25) 
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   The logarithm of the posterior density function in (20) is given 
by 

 

          +   . (26) 

The following nonlinear equations can be solved to obtain the 
mode  of the posterior density 

             ,                                          (27) 

                ,           (28) 

                    ,            (29) 

where     are given in equations (10-12) . 

   A solution of the system of equations (27-29) can be obtained 
iteratively by choosing initial values  of  

 respectively. 

To apply Lindley’s approximation form (25), we have to obtain 
the elements of the matrix (  , where for i, j=1, 2, 3,  are 
given in the Appendix. The elements , i, j=1,2,3, of the matrix  
are obtained numerically by inverting the matrix ( . 
Furthermore, for i, j, k=1,2,3, the elements  can be obtained 
from equations (27-29) and are given in the Appendix.  

   If we set in equation (25), we can write the 
approximate Bayes estimators for   as follows: 

                     ,        (30) 

                  ,    (31) 

                  .  (32) 
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3.2 Bayesian estimation under zero-one loss function 

 Considering the zero-one loss function, then the Bayesian 
estimator is the mode of the corresponding posterior density 
function. 

   Taking logarithms of both sides of equation (20) yields equation 
(26) which we have obtained in Subsection 3.1. Differentiating 

 with respect to   and equating to zero we can 
obtain the nonlinear equations (27-29), then solving numerically, 
the mode can be obtained. 

4. Monte Carlo Simulation 
The Bayes and maximum likelihood estimates of the vector 

of parameters  are computed and compared 
according to the following steps:  

1. The population parameters   are generated from 
the joint prior density given by equation (19), for given 
values of the prior parameters . The 
MATHCAD 7 Program is used in the generation. 

2. Based on the generated values of  , upper record 
values of size m= 3, 4, 5, 6 and 7 are generated from the 
finite mixture of two Weibull distributions with the pdf 
given in equation (2). 

3. The maximum likelihood estimates (MLEs) of   
are computed by solving the nonlinear equations (10-
12).The MATHCAD 7 Program is used. 

4. For given values of the prior parameters 
 the Bayes estimates of   are 

computed using equations (27-29). 
5. The mean squared errors are computed for different sizes m. 
6. The above steps are repeated 1000 times and the estimated 

risks (ER) are computed as follows: 

                                             ER( )=     (33) 
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The results are displayed in Tables (4.1), (4.2) and (4.3). 

Table (4.1) The variances and ER’s of ML and Bayes estimates of 
 

 when   

 

n ER of 

 
MLE 

ER of  
BZ 

 

ER of  
BS 

 

Var of 

MLE 

Var of 
BZ 

 

Var of 
BS 

 

3 0.013 

0.093 

0.054 

0.027 

0.070 

0.476 

0.158 

0.115 

0.215 

0.013 

0.064 

0.043 

3.550×10-3 

0.063 

0.447 

7.170×10-3 

0.115 

0.195 

4 0.018 

0.167 

0.056 

0.018 

0.062 

0.236 

0.173 

0.253 

0.211 

0.018 

0.166 

0.056 

4.305×10-3 

0.049 

0.235 

0.010 

0.231 

0.210 

5 0.021 

0.277 

0.066 

9.275×10-3 

0.051 

0.080 

0.185 

0.346 

0.286 

0.018 

0.242 

0.065 

4.626×10-3 

0.041 

0.078 

0.017 

0.318 

0.281 

6 0.023 

0.236 

0.081 

5.884×10-3 

0.050 

0.042 

0.060 

0.216 

0.514 

0.013 

0.238 

0.078 

3.971×10-3 

0.045 

0.038 

0.019 

0.136 

0.394 

7 0.027 

0.273 

0.115 

0.015 

0.087 

0.224 

0.054 

0.194 

0.508 

8.481×10-3 

0.195 

0.111 

0.012 

0.085 

0.219 

0.019 

0.141 

0.371 
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Table (4.2) The variances and ER’s of ML and Bayes estimates of 
 

 when   

 

n ER of 

 
MLE 

ER of  
BZ 

 

ER of  
BS 

 

Var of 

MLE 

Var of 
BZ 

 

Var of 
BS 

 

3 9.478×10-4 

2.503×10-3 

1.03×10-3 

0.015 

0.067 

0.037 

0.039 

0.174 

0.234 

9.478×10-4 

2.493×10-3 

9.321×10-4 

6.917×10-5 

5.687×10-3 

0.013 

2.682×10-3 

0.078 

0.233 

4 1.295×10-3 

0.017 

2.829×10-3 

0.015 

0.081 

0.076 

0.039 

0.182 

0.279 

1.289×10-3 

0.017 

2.277×10-3 

1.064×10-4 

0.025 

0.056 

1.439×10-3 

0.100 

0.228 

5 5.209×10-3 

0.120 

0.011 

0.016 

0.153 

0.302 

0.046 

0.232 

0.319 

4.657×10-3 

0.111 

8.772×10-3 

5.298×10-4 

0.122 

0.300 

2.376×10-3 

0.143 

0.227 

6 0.014 

0.439 

0.066 

0.022 

0.368 

1.116 

0.059 

0.217 

0.435 

9.31×10-3 

0.332 

0.049 

1.743×10-3 

0.364 

0.982 

4.116×10-3 

0.187 

0.339 

7 0.024 

0.687 

0.150 

0.023 

0.546 

1.656 

0.068 

0.215 

0.449 

9.77×10-3 

0.422 

0.095 

1.850×10-3 

0.473 

1.191 

6.210×10-3 

0.215 

0.388 
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Table (4.3) The variances and ER’s of ML and Bayes estimates of 
 

 when   

 

n ER of 

 
MLE 

ER of  
BZ 

 

ER of  
BS 

 

Var of 

MLE 

Var of 
BZ 

 

Var of 
BS 

 

3 0.017 

0.080 

0.047 

5.702×10-3 

0.032 

0.038 

0.066 

0.209 

0.372 

0.015 

0.046 

0.040 

3.425 

0.030 

0.037 

0.011 

0.131 

0.365 

4 0.027 

0.118 

0.055 

4.48×10-3 

0.074 

0.057 

0.069 

0.215 

0.397 

0.018 

0.115 

0.052 

3.047×10-3 

0.061 

0.057 

0.014 

0.126 

0.360 

5 0.038 

0.170 

0.063 

2.921×10-3 

0.097 

0.102 

0.070 

0.247 

0.471 

0.015 

0.162 

0.061 

2.286×10-3 

0.082 

0.102 

0.018 

0.145 

0.375 

6 0.047 

0.165 

0.065 

1.085×10-3 

0.050 

0.063 

0.060 

0.216 

0.514 

9.541×10-3 

0.139 

0.065 

9.878×10-4 

0.047 

0.062 

0.019 

0.136 

0.394 

7 0.053 

0.128 

0.061 

1.484×10-3 

0.034 

0.088 

0.054 

0.194 

0.508 

5.333×10-3 

0.105 

0.060 

1.403×10-3 

0.032 

0.088 

0.019 

0.141 

0.371 

 

5. Concluding Remarks 
1. Estimation of the parameters of the finite mixture model of 

two Weibull distributions are considered from a Bayesian 
approach based on record statistics. The Bayes estimates are 
obtained by using the approximation form of Lindley. 
These estimates are compared with their corresponding 
maximum likelihood estimates.  
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2. It may be noted that the estimated risks of the estimates 
(ML or Bayes) decrease as the sample size m increases.  

3. In most cases MLEs tend to be more efficient than the 
Bayes estimates since they have smaller estimated risks. 

4. The MLEs perform better than the Bayes estimates under 
squared error and zero-one loss functions. 

5. The Bayes estimates under zero-one loss function perform 
better than the corresponding results under squared error 
loss function. 

6. Different values of the prior parameters  
 (more than those in the tables) have 

been considered but the previous conclusion did not change.                               
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Appendix 

It follows from equations (20-22) and equations (25-27) that for i, j, k = 1, 2, 3, = 
  , which can be shown to be  
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Furthermore, for i, j, k = 1, 2, 3 the elements  )( ijk  are obtained as  
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(A 16) 

where 

xxx
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2
2 )(ln1)( xx

cj
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2
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