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ABSTRACT

The main objective of this article is to examine the numerical
efficiency of the gamma approximation technique , developed by
Broemeling and Shaarawy (1988) , to estimate the error variance
of the noise term of the second order moving average process. In
order to achieve our main goal , six simulation studies are
conducted with different variances and coefficients ; then
proposed criteria are calculated. The inspection of the numerical
results shows that the proposed approximation can efficiently
estimate the noise variance with very high precision for moderate
and large time series lengths. In addition , the numerical results
show that better results can be obtained if the error variance is
small.

Keywords : Moving average processes ,; Error variance
Likelihood function ; Jeffreys' prior ; Posterior density
function ; Simulation .

1.INTRODUCTION

The literature on time series is vast and may be found in
many areas other than statistics such as economics, business,
physics, engineering and environmental studies. Most of the
literature is non-Bayesian and the reader is referred to Box and
Jenkins (1970), Chatfield (1980), Priestely (1981), Harvey (1993),
Box et.al (2008), Wei (2005) and Liu (2009) for the non-Bayesian
theory and methodology.

Most of Bayesian contributions of time series focus on pure
autoregressive processes and pay little attention to moving
average processes, denoted by MA(q), or mixed ARMA
processes. The difficulty with MA(q) processes is that the
likelihood function is analytically intractable and statistical
inferences should be done numerically. Zellner (1971) introduced
the reader to the Bayesian analysis of pure autoregressive
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processes. He used Jeffreys’ vague prior to develop the posterior
distributions of the first and second orders autoregressive models.
Newbold (1973) did a Bayesian analysis of transfer function
processes of which the ARMA processes are special case.
Macleod (1977) proposed replacing the determinant of the
covariance matrix of ARMA processes by its asymptotic limit in
order to approximate the conditional likelithood function.
However, his approach does not avoid the problem of computing
the inverse of the covariance matrix. Phadke and Kedem (1978)
presented three different techniques to obtain the exact likelihood
function for moving average processes. However, none of these
techniques avoid the problem of computing the inverse of the
covariance matrix. Zellner and Reynold (1978) showed that the
statistical inferences about the coefficients can be approximately
done using a non-central multivariate t distribution. Monahan
(1983) made a very important contribution to time series analysis.
Using a numerical integration technique, he implemented the
identification, estimation and forecasting phases of ARMA
processes. Lahif (1980) investigated the first autoregressive
process in the same way Monahan did with mixed models.
Shaarawy and Broemeling (1984) presented an approximate
methodology to estimate the parameters of pure moving average
processes. They showed that the posterior distribution of the
precision parameter can be approximated by a gamma
distribution. Broemeling and Shaarawy (1986,1988) did a
comprehensive approximate technique to implement the
identification, estimation, diagnostic checking and forecasting
phases of ARMA processes. The numerical efficiency of their
estimation technique has been investigated by Shaarawy and El-
Shawadfy (1994) for the coefficients only. Kutbi(2010) examined
the efficiency of their approximation for the precision parameter
of the first order moving average process. However, the efficiency
of their technique to estimate the error variance has not been
investigated yet.
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The essential objective of this paper is to study and
investigate the behavior of the gamma approximation , proposed
by Shaarawy and Broemeling(1984) , in estimating the variance
parameter of the error term of the second order moving average
processes. The performance of the gamma approximation is
investigated through a large simulation study. Section 2 of this
paper presents the second order moving average processes and
shows how to use the gamma approximation to estimate the error
variance. Section 3 is focused to conduct six simulation studies to
investigate the numerical efficiency of the gamma approximation
which will be denoted by the BS technique. Finally , Section 4
presents the summary and conclusions of the research paper.

2. MOVING AVERAGE PROCESS OF THE SECOND ORDER

The Bayesian analysis of time series is based on special
parametric models such as regression models with autocorrelated
errors , distributed lag model , autoregressive models , and
moving average models. A very important model is the second
order moving average process , denoted by MA(2), which is

defined by :
y(t) = ©(B) &(t) 2.1)

where y(t) is the observation at time t=...... ,—2,-1,0,1,2,.... ,
e(t) is a sequence of independent normally distributed random

variables with mean zero and unknown precision t=1/6">0 .
The polynomial operator ®(B) is given by :
®B)=1-06,B-0,B’

where 0, and 0, are real unknown constants , and the backshift
operator B is such that :
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B'e(t)=¢(t—r) , r=12

The MA(2) process is always stationary and is invertible if
the roots of the equation ®(B) =0 lie outside the unit circle. It can
be shown that the MA(2) process is invertible if 0, +0, <1 ,
0,-0, <1 and ‘92‘<1, see Box and Jenkins(1970). The main
problem with analyzing the MA(2)process is that the sum of
squared errors is nonlinear function of the coefficients 6, and 0, .

Suppose n observations are available , say

S,=y(D),y(?2),.....,y(n)

then the conditional likelihood function of the MA(2) process is

L(6.| §n)ocr“”Exp{—gil[ym—elea—l)—eze(t—z)]z}

(2.2)
where 9=(91,92)€R2,T>0 and ¢g(t—-2)=0, t=12.

Thus the likelihood is conditional on the first 2 errors being zero.
The maximum likelihood estimators of the parameters O, and 0,

is equivalent to minimizing the conditional sum of squared errors.
However , the error of the MA(2) model can be written as

e(t)=y(t)+0,e(t-1)+0,e(t-2) , t=1,2,....,n
(2.3)
which can be computed recursively if one knew 0 . Since the sum

of squared errors ,
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SS(8) = D[y(D)+ 8,6(t ~ 1) + B,5(t —~2)]°

t=1

is a nonlinear function of 0 , one must use a grid search ( usually

over the invertibility domain ) or employ a nonlinear regression
algorithm in order to estimate 6 . The maximum likelihood

estimate O my be used to calculate the estimated residuals , via

equation (2.3) , with ¢(t—2)=0 , t=1,2 , producing

2,
e(t)=y(t) + Zl 0;&(t-J)
e

If these estimated errors are substituted in to (2.2) , one has an
approximate conditional likelihood function :

*
L (6,7

S, )oc rn/zExp{— %Z[y(t) +0,8(t—1)+0,8(t - 2)]2}
t=1
(2.4)
where 6 e R?,1>0, and S, 1s the vector of n observations.

The posterior analysis is based on combining the approximate
conditional likelihood function (2.4) with a normal-gamma prior
density where 0|t~ N(u,Pt)is the conditional prior density of 0

given 1t , where p is 2x1 vectorand P a 2x2 positive definite

matrix. The marginal prior density of t is gamma with parameters
a and b. Thus the joint posterior distribution of 6 and t will also

be normal gamma.
Shaarawy and Broemeling(1984) have shown that the

approximate marginal posterior distribution of t is gamma with
parameters
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OL:(n+2a)
2

and
B=(C-B'A'B)/2
where A 1s the 2 x 2 matrix

A:P+(aij) ,
Bisa 2x1 vector
B=Pu-(b)

and C is the scalar,

C=pu Ppn +2b+i y2(t)
~ o~ =1

Further more

()= Bt-DEt-j) . ij=12 2.5)

t=1
and

b)=Y yOit-) . =12 (2.6)

t=l1

Thus , one may estimate the error variance o> =1"' by

B0 [5,)=E([5,) ="
—

-44 -



with posterior variances given by

2 _ -1 = BZ
VOB = Y )= a2

The above posterior analysis is derived under the assumption
that a normal — gamma describes prior information. Thus , if one
is quite confident about the prior distribution of the parameter ,
one would specify such prior by the appropriate choice of p , P,

a,and b, however ,if one knows very little , a priori , about the
parameters 0 and t , one might employ Jeffrey's vague density :

£O,1)ct! , 0eR?, 1>0

which will produce a normal — gamma posterior density with
parameters given above , by letting

u—>02x1),P>0@2x2),a—>-1, and b—>0.

3. AN EFFECTIVENESS STUDY

This main objective of this section is to study the
performance of the gamma approximation in estimating the
variance of the error term of the moving average processes of the
second order. The approximation , which has been developed by
Broemeling and Shaarawy(1988) , is used with Jeffrey's prior
density to conduct a simulation study to estimate the parameter c”
of MA(2) model with various parameter values. The parameters
in some cases are chosen to be well inside the invertibilility
domain while in some cases they are chosen to be near the

boundaries. All computations are performed on a PC using the
MATLAB computer package .
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Here, our main concern is to study the numerical efficiency
of the gamma approximation , proposed by Broemeling and
Shaarawy(1988) for the precision parameter , in estimating the

error variance o° using some proposed criteria. The proposed
criteria are the average (AVR) , the variance (VAR), the mean
absolute deviation (MAD) and the mean squared error (MSE).
Such efficiency will be examined with respect to the time series
length n as well as the parameters of the selected model.

Simulation I , as an illustration, begins with generating 500
data sets , each of size 500 , from normal distribution with zero

mean and variance o° =0.5. These data sets are then used to
generate 500 realizations , each of size 200 , from MA(2)process

with 6, =0.5 and 0, =—0.6. Note that the first 300 observations

are ignored to remove the initialization effect. The second step of
simulation I is to carry out all computations required to estimate

the variance parameter o> using each of the 500 realizations and

to find the frequency distribution of the posterior mean of o~.
Such computations are done for a specific time series length n
using the first n observations of each generated realization. This
second step is repeated for each chosen sample size. The sample
size n 1s taken to be 20 , 30 , 50 , 100 , 150 and 200 . The
frequency distribution of the error variance is reported in table 1.
The average (AVR) , the variance (VAR), the mean absolute
deviation (MAD) and the mean squared error (MSE) are
computed for the posterior mean and reported in table 2.
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Table (1)

Frequency Distributions of The Posterior Expectation For
Simulation I where :
c>=05, 0,=05, 0,=-06

W
=)
n
=)

Intervals n=20 100 | 150 | 200

(-0.6,-0.5] 1
(-0.5,-0.4] 0
(-0.4,-0.3] 0
(-0.3,-0.2] 0
0
2
6

(-0.2,-0.1]
(-0.1,0.0]
(0.0,0.1]
(0.1,0.2] 15
(0.2,0.3] 48
(0.3,0.4] 105 | 106
(0.4,0.5] 106 | 157|183 ] 221220255
(0.5,0.6] 104 104|153 196|234 [ 224

(=) e} fen] fen) fen ) o ) Fen ) §

Slololo|lolo|lolol~
olo|ojolo|lo|o|o|—
olo|ojolo|lo|o|o|—

p—
(O8]

Ne) feu] fen] fen) fen )l fer)l fen ) fan) Fan B 1

~
w
N
@R
)
W

(0.6,0.7] 49 50 162138 1|21 |11
(0.7,0.8] 29 27 | 11 ] 2 0 1
(0.8,0.9] 21 121 3 0 0 0
(0.9,1.0] 13 2 2 0 0 0
(1.0,1.1] 1 0 0 0 0 0
(1.1,1.2] 0 0 0 0 0 0
(1.2,1.3] 0 0 0 0 0 0
(1.3,1.4] 0 0 0 0 0 0
(1.4,1.5] 0 0 0 0 0 0
(1.5,1.6] 0 0 0 0 0 0

Inspecting the numerical results of table 1 , one may observe

that the values of the posterior mean of the error variance o°
tends to fall in the interval (0.4,0.6) with a midpoint 0.5 which the
true value of our parameter. This becomes more clear as n gets
bigger. This means that the posterior mean tends to converge to
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the true parameter value o =0.5. It might be important to notice
that the percentages of the values of the posterior expectations
which fall in the interval (0.4,0.6) are 42%, 52.2%, 67.2%, 83.4%,
90.8%, and 95.8% for n=20,30,50,100,150 and 200. Thus one

may conclude that the performance of the BS approximation is
very good with moderate and large sample size.

Table 2 gives the numerical behavior of the proposed criteria
AVR, VAR, MAD and MSE for the BS technique. The table
shows an increasing trend in the efficiency of the BS technique in
estimating the variance of the second order moving average
process. The AVR converges to the true parameter 0.5. The VAR,
MAD and MSE decrease as the sample size increases. The VAR
decrease from 0.036 to 0.003 as n increases from 20 to 200.
The MAD decreases from 0.15 to 0.04 when n increases from 20
to 200. Finally, the MSE decreases from 0.04 to 0.003 as n
increases from 20 to 200.

Table (2)
The Behavior of The Average , Variance , The Mean Absolute
Deviation and Mean square Error of The Bayesian estimates of
Simulation I Where ¢*=05 , 6,=05 , 06,=-0.6

n AVR VAR MAD MSE
20 ]0.480136]10.03569910.15093010.037610
30 10.488125]10.020590]10.110658|0.019253
50 ]0.49772910.01152310.08464310.011538
100 | 0.498959]0.005354]0.059293]0.005374
150 | 0.500302]0.003499]0.046717)0.003345
200 ]0.499137]0.00258110.040323]10.002527

The numerical results of simulations II and III where
o> =1.0 and 2.0 respectively, with 6, =0.5 and 0, =—0.6, are
explained in a similar way. The results are given by tables 3-6.
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The results of the simulations IV , V and VI where
62 =0.5,1.0,2.0, respectively, with 0, =0.5 and 0, =0.3, are
reported in tables 7-12. It might be important to mention that the
numerical results get better when the true variance gets small .
Table (3)
Frequency Distributions of The Posterior Expectation For
Simulation II where :

6>=10 , 6,=05 , 6,=-0.6

Intervals n=20 | 30 50 100 150 200
(-0.3,-0.2] 1 0 0 0 0 0
(-0.2,-0.1] 0 0 0 0 0 0
(-0.1,0.0] 2 0 0 0 0 0
(0.0,0.1] 0 0 0 0 0 0
(0.1,0.2] 4 0 0 0 0 0
(0.2,0.3] 5 2 0 0 0 0
(0.3,0.4] 11 0 0 0 0 0
(0.4,0.5] 14 9 1 0 0 0
(0.5,0.6] 33 18 9 0 0 0
(0.6,0.7] 51 51 18 5 1 1
(0.7,0.8] 52 51 51 28 21 15
(0.8,0.9] 52 63 78 92 81 74
(0.9,1.0] 53 76 100 146 149 175
(1.0,1.1] 50 85 91 104 151 159
(1.1,1.2] 48 62 76 82 68 59
(1.2,1.3] 36 26 39 34 25 17
(1.3,1.4] 31 23 25 5 4 0
(1.4,1.5] 19 24 9 4 0 0
(1.5,1.6] 16 4 3 0 0 0
(1.6,1.7] 8 5 0 0 0 0
(1.7,1.8] 8 1 0 0 0 0
(1.8,1.9] 1 0 0 0 0 0
(1.9,2.0] 3 0 0 0 0 0
(2.0,2.1] 0 0 0 0 0 0
(2.1,2.2] 0 0 0 0 0 0
(2.2,2.3] 2 0 0 0 0 0

1

S

o
1



Table (4)

The Behavior of The Average , Variance , The Mean Absolute
Deviation and Mean square Error of The Bayesian estimates of

Simulation II Where o°=1.0 ,

0,=05 , 0, =—0.6

n AVR VAR MAD MSE

20 ]0.965174]0.141606]0.290907]10.131695
30 |0.975636]10.081442)10.205158]10.066750
50 ]0.99922110.046067]0.157016]10.038065
100 | 0.999372]0.021456]0.114107}0.020403
150 | 0.998108|0.013935|0.094821]0.014100
200 ] 0.995855]0.010284]0.082762]10.011014

Table (5)

Frequency Distributions of The Posterior Expectation For
Simulation III where :
?=20, 0,=05, 6,=-06

Intervals | n=20 | 30 50 100 150 200
(....,0.5] 12 2 0 0 0 0
(0.1,0.2] 1 0 0 0 0 0
(0.2,0.3] 0 0 0 0 0 0
(0.3,0.4] 2 0 0 0 0 0
(0.4,0.5] 1 1 0 0 0 0
(0.5,0.6] 3 0 0 0 0 0
(0.6,0.7] 0 0 0 0 0 0
(0.7,0.8] 5 3 0 0 0 0
(0.8,0.9] 9 1 0 0 0 0
(0.9,1.0] 14 3 0 0 0 0
(1.0,1.1] 11 6 1 0 0 0
(1.1,1.2] 17 12 4 0 0 0
(1.2,1.3] 18 21 8 1 0 0
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Intervals | n=20 30

n
=)

100 150 200

(1.3,1.4] 23 22

=
W
o
o

(1.4,1.5] 26 16

[\ o)
S
p—
S
N
(O8]

(1.5,1.6] 30 | 38

w
o0
)
w
(@)
N

(1.6,1.7] 27 | 36

w
~J
N
)
)
o0
)
w

(1.7,1.8] 36 | 47

N
[a—
N
o)
(@)
)
N
oo

(1.8,1.9] 21 39

W
S
W
\1
~J
(@)
~
W

N
[a—
J
V)]
o]
O8]
O
[\9)

(1.9,2.0] 29 | 42

(2.0,2.1] 21 33

N
[a—
3
[\
(@)}
O
O
(0%

(2.1,2.2] 32 | 20

(V)]
—
N
W
N
—
~
()

w
D
N
(@)
w
D
w
D

(2.2,2.3] 16 | 21

(2.3,2.4] 19 15

\®]
(o)}
\S]
-
\S]
-
(O8]
-

(2.4,2.5] 18 | 28

[\
J
N
(e}
W
(e}
[—
N

(2.5,2.6] 17 | 27| 19 11 11 4
(2.6,2.7] 12 0] 9 10 0 1
(2.7,2.8] 12 9 9 3 2 0
(2.8,2.9] 10 0] 9 4 0 1
(2.9,3.0] 11 7 7 1 1 0
(3.0,3.1] 8 7 4 2 0 0
(3.1,3.2] 8 3 1 0 0 0
(3.2,3.3] 11 7 3 0 0 0
(3.3,3.4] 4 4 3 1 0 0
(3.4,3.5] 5 3 0 0 0 0
(3.5,3.6] 3 2 1 0 0 0
(3.6,3.7] 0 1 0 0 0 0
(3.7,3.8] 3 1 0 0 0 0
(3.8,3.9] 3 2 0 0 0 0
(3.9,4.0] 2 1 0 0 0 0
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Table (6)

The Behavior of The Average , Variance , The Mean Absolute
Deviation and Mean square Error of The Bayesian estimates of

Simulation III Where ¢*=2.0 , 6,=05 , 06, =-0.6

n AVR VAR MAD MSE

20 |]2.003304]0.621265]0.619673]10.646269
30 |2.006890]10.350515]10.460663|0.353876
50 |]2.026310]0.190740]0.341605]10.186406
100 |2.013410|0.087327|0.238347]0.094410
150 |2.011745]0.056666]0.199388|0.061293
200 ]2.01584210.042139]10.168944]10.045172

Table (7)

Frequency Distributions of The Posterior Expectation For
Simulation IV where :
>=05, 06,=05, 0,=03

Intervals | n=20 | 30 50 100 150 200
(-0.5,-0.4] 0 0 0 0 0 0
(-0.4,-0.3] 0 0 0 0 0 0
(-0.3,-0.2] 0 0 0 0 0 0
(-0.2,-0.1] 0 0 0 0 0 0
(-0.1,0.0] 1 0 0 0 0 0
(0.0,0.1] 2 0 0 0 0 0
(0.1,0.2] 7 2 1 0 0 0
(0.2,0.3] 41 21 7 0 0 0
(0.3,0.4] 97 100 64 43 20 11
(0.4,0.5] 101 132 | 174 196 226 255
(0.5,0.6] 106 111 | 142 213 231 219
(0.6,0.7] 65 76 81 47 23 15
(0.7,0.8] 36 35 28 1 0 0
(0.8,0.9] 22 17 3 0 0 0
(0.9,1.0] 11 6 0 0 0 0
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Intervals | n=20 | 30 50 100 150 200
(1.0,1.1] 8 0 0 0 0 0
(1.1,1.2] 2 0 0 0 0 0
(1.2,1.3] 0 0 0 0 0
(1.3,1.4] 1 0 0 0 0
(1.4,1.5] 0 0 0 0 0
(1.5,1.6] 0 0 0 0 0
Table (8)

The Behavior of The Average , Variance , The Mean Absolute
Deviation and Mean square Error of The Bayesian estimates of
Simulation IV Where ¢°>=0.5 , 6,=05, 0,=0.3

n AVR VAR MAD MSE
20 ]0.51853110.040869]0.15045110.037986
30 |0.511705]10.022705]10.118065]0.022114
50 ]0.51131910.01214810.08608610.012010
100 | 0.502032]|0.005421|0.059908]0.005460
150 | 0.501793]|0.003520|0.046722]0.003428
200 ]0.501406]0.002605]0.04065110.002613
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Table (9)

Frequency Distributions of The Posterior Expectation For
Simulation V where :

>=10 , 6,=05 , 6,=03

Intervals | n=20 | 30 50 100 150 200
(-eeeey 0.1] 7 1 0 0 0 0
(0.1,0.2] 0 0 0 0 0 0
(0.2,0.3] 2 0 0 0 0 0
(0.3,0.4] 6 1 1 0 0 0
(0.4,0.5] 15 5 0 0 0 0
(0.5,0.6] 39 25 4 0 0 0
(0.6,0.7] 41 38 21 6 2 1
(0.7,0.8] 52 68 63 26 13 5
(0.8,0.9] 64 75 80 86 78 71
(0.9,1.0] 53 59 95 142 171 167
(1.0,1.1] 48 62 86 120 136 176
(1.1,1.2] 41 41 66 71 62 62
(1.2,1.3] 23 42 40 31 30 14
(1.3,1.4] 34 33 25 14 6 4
(1.4,1.5] 16 22 11 4 2 0
(1.5,1.6] 17 14 5 0 0 0
(1.6,1.7] 19 9 2 0 0 0
(1.7,1.8] 10 4 1 0 0 0
(1.8,1.9] 9 1 0 0 0 0
(1.9,2.0] 4 0 0 0 0 0
(2.0,2.1] 0 0 0 0 0 0
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Table (10)

The Behavior of The Average , Variance , The Mean Absolute
Deviation and Mean square Error of The Bayesian estimates of

Simulation V Where ¢°=1.0 ,

0,=05 , 6,=03

n AVR VAR MAD MSE

20 |1.022794]0.159007]10.303468|0.146966
30 ]0.997940]10.086446|0.236927]0.084700
50 |1.000185]0.046405]10.167032]|0.043754
100 |1.004963]0.021713]0.113722)10.021420
150 |1.007261]|0.014202]0.096896|0.015147
200 |1.004057]10.010451]10.081227]0.010826

Table (11)

Frequency Distributions of The Posterior Expectation For
Simulation VI where :

6>=20, 06,=05, 0,=03

Intervals | n=20 | 30 50 100 150 200
(...,0.8] 72 38 10 0 0 0
(0.8,0.9] 7 5 0 0 0 0
(0.9,1.0] 10 3 1 0 0 0
(1.0,1.1] 8 3 2 0 0 0
(1.1,1.2] 16 13 4 0 0 0
(1.2,1.3] 16 14 11 4 0 0
(1.3,1.4] 28 20 15 3 1 0
(1.4,1.5] 25 25 14 10 1 0
(1.5,1.6] 29 21 29 11 10 7
(1.6,1.7] 25 31 24 30 24 14
(1.7,1.8] 26 32 50 53 39 48
(1.8,1.9] 26 32 45 60 72 87
(1.9,2.0] 24 31 42 65 96 82
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Intervals | n=20 | 30 50 100 150 200
(2.0,2.1] 26 33 55 67 80 96
(2.1,2.2] 26 25 33 59 69 78
(2.2,2.3] 38 32 32 52 47 48
(2.3,2.4] 20 33 32 37 32 24
(2.4,2.5] 12 28 33 18 15 10
(2.5,2.6] 20 20 26 14 11 6
(2.6,2.7] 16 20 16 10 3 0
(2.7,2.8] 7 14 10 3 0 0
(2.8,2.9] 10 13 12 4 0 0
(2.9,3.0] 13 14 4 0 0 0
(3.0,3.1] 0 0 0 0 0 0
Table (12)

The Behavior of The Average , Variance , The Mean Absolute
Deviation and Mean square Error of The Bayesian estimates of
Simulation VI Where o*=2.0, 6,=05, 0,=0.3

n AVR VAR MAD MSE
20 ]2.08189910.657345]10.601162]10.602487
30 |2.085906]10.377462)10.484457)10.374648
50 ]2.052676]0.195835]0.348940]10.195576
100 |2.028975]0.088432]0.2314580.084605
150 |2.023514|0.057171|0.178608]0.050832
200 ]2.014076]0.042008]0.16033410.039469
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Inspection of the numerical results of the tables supports the
adequacy of the gamma approximation, developed by Broemeling
and Shaarawy(1988) , in estimating the variance parameter of the
error term of the second order moving average processes.

4. SUMMARY AND CONCLUSIONS

The main objective of this paper is to examine the
performance of the gamma approximation , proposed by
Broemeling and Shaarawy (1988) , to estimate the error variance
of the second order moving average processes . In order to achieve
the main objective , six simulation studies have been conducted
with different variance values and the frequency distributions have
been examined . In addition , the mean , variance , the mean
absolute deviation and the mean square error have been
calculated. The numerical results show that the gamma
approximation can efficiently estimate the variance parameter
with high precision for moderate and large sample size.

-57 -



[8]

[9]

Box, G. and Jenkins, G. (1970). Time Series Analysis,
Forecasting and Control.(Holden-Day, San Francisco).

Box, G. , Jenkins, G. and Reinsel, G. (2008). Time Series
Analysis, Forecasting and Control.(4" edition. Wiley, New
Y ork).

Broemeling, L. and Shaarawy, S. (1986). A Bayesian
Analysis of Time Series, Bayesian Inferences Decision
Techniques with Applications : Essay in Honor of Bruno de
Finetti, (edited by Goeland Zellener).

Broemeling, L. and Shaarawy, S. (1988). Time Series
Analysis : A Bayesian Analysis in the Time Domain.
Bayesian Analysis of Time Series and Dynamic Model,
(edited by Spall, J).

Chatfield, C. (1980). The Analysis of Time Series : Theory
and Practice . (Chapman and Hall Ltd. , London).

Harvey, A. (1993). Time Series Models, (2™ edition. The
MIT Press).

Kutbi, M. (2010). “The Efficiency of the Gamma
Approximation of Bayesian Estimation of the Error Precision
for the First Order Moving Average Process”. The Scientific
Journal of Commerce Faculty, Azhar University, Vol.6.

Lahif, M. (1980). “Time Series Forecasting with non-
informative Prior Distribution”. Technical Report No.111 ,
Department of Statistics , University of Chicago.

Liu, L. (2009), Time Series Analysis and Forecasting. (2™
edition. Scientific Computing Association Corp,USA).

[10] Macleod, A. (1977). “Improved Box-Jenkins Estimators”.

Biometrika, Vol. 64, pp. 531-534.

[11] Monahan, J. (1983). “Fully Bayesian Analysis of ARIMA

Time Series Models”, Journal of Econometrics, Vol. 21, pp.
307-331.

-58 -



[12] Newbold, P.(1973). “Bayesian Estimation of Box and
Jenkins Transfer Function Model for Noise Models”. Journal
of the Royal Statistical Society , Series B, vol. 35. No. 2, pp.
323-336.

[13] Phadke, M.S. and Kedem, G. (1978). “Computation of the
exact Likelihood Function of Multivariate Moving Average
Models”. Biometrika, vol. 65, pp. 511-519.

[14] Priestely, M. (1981). Spectral Analysis of Time Series ,
(Academic Press, London).

[15] Shaarawy, S. and Broemeling, L. (1984). ‘“Bayesian
Inference and Forecasts with Moving Average Processes” .
Comm. In Statis. Vol.13, No. 15, pp. 1871-1888.

[16] Shaarawy, S. and El-Shawadfy, G. (1994). “On the
Adequacy of using T Approximation in Bayesian Inferences
of ARMA Models”. The Egyption Statistical Journal Institute
of Statistical Studies and Research, Cairo university.

[17] Wei, W.W.S. (2005). Time Series Analysis : Univariate and
Multivariate Methods . (Addison Wesley , Reading, MA).

[18] Zellner, A. (1971). An Introduction to Bayesian Inference in
Econometrics. (John Wiley and Sons. Inc, New York).

[19] Zellner, A. and Reynolds, R. (1978). “Bayesian Analysis of
ARMA Models”. Presented at the Sixteenth Seminar on
Bayesian Inference in Econometrics, Vol. 23, pp. 1-5, June
2-3.

-59 -



