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ABSTRACT 
 

     Based on the Kumaraswamy Marshal-Olkin distribution (Gauss M. Cordeiro et al 

2015), we study the so-called the Kumaraswamy Marshal-Olkin Flexible Weibull 

(“KUMOFW” for short) distribution, for the first time the KUMOFW distribution is 

introduced and studied. We present some structural properties of the proposed 

distribution, including explicit expressions for the moments. The method of maximum 

likelihood is used to estimate the model parameters. We illustrate the importance of the 

new model by means of application to real data set.  

 

Keywords: Kumaraswamy-Marshal-Olkin generalization distribution, Flexible Weibull 

Distribution, Estimation Process, Kurtosis, Skewness, MLE, Reliability.  
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1  Introduction 
 

 The quality of the procedures used in a statistical analysis depends heavily on the 

assumed probability model or distributions. Because of this, considerable effort has been 

expended in the development of large classes of standard probability distributions along 

with revelent statistical methodologies. In fact, the statistics literature is filled with 

hundreds of continuous univariate distributions. However, in recent years, applications 

from the environmental, financial, biomedical sciences, engineering among others, have 

further shown that data sets following the classical distributions are more often the 

exception rather than the reality. Since there is a clear need for extended forms of these 

distributions a significant progress has been made toward the generalization of some 

well-known distributions and their successful application to problems in areas such as 

engineering, finance, economics and biomedical sciences, among others. 

 

 

2   The Flexible Weibull Distribution 

 
    A random variable ܶ is said to follow the Flexible Weibull distribution with two 

parameters if the probability density function pdf of ܶ is as follows: 
 

,ݔ)݂ ,ߙ (ߚ = ቀߙ + ఉ
௫మ
ቁ ݌ݔ݁	 ቀߙ	ݔ − ఉ

௫
ቁ ݌ݔ݁	 ൬−݁ఈ	௫ି

ഁ
ೣ൰ ,ݔ					 ,ߙ ߚ > 0  (1) 

 

The parameters ߙ and		ߚ are usually called the shape and scale parameters, respectively. 

The statistical properties of the density are obtained; However, The estimation of the 

unknown parameters is easier to calculate.  
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     The cumulative distribution function cdf of the two parameters Flexible Weibull 

distribution of the random variable T is given by: 

,ݔ)ܨ ,ߙ (ߚ = 1 − ݌ݔ݁ ൬−݁ఈ	௫ି
ഁ
ೣ൰ ,ݔ															 ,ߙ ߚ > 0                      (2) 

 

The corresponding Survival function  tS  and the hazard rate function ℎ(ݔ) are: 

,ݔ)ܵ ,ߙ (ߚ = ݌ݔ݁ ൬−݁ఈ	௫ି
ഁ
ೣ൰ ,ݔ																							 ,ߙ ߚ > 0          (3) 

ℎ(ݔ, ,ߙ (ߚ = ቀߙ + ఉ
௫మ
ቁ ݌ݔ݁	 ൬−݁ఈ	௫ି

ഁ
ೣ൰ ,ݔ					 ,ߙ ߚ > 0                        (4) 

 

3 The Kumaraswamy Marshal-Olkin Family of Distributions 
 

     A random variable X has the cdf of the Kumaraswamy Marshal-Olkin (‘‘KUMO’’) 

family of distributions by 

;ݔ)௞௪ெைܨ ܽ, ܾ, (݌ = 1 − ቄ1 − ቀ ீ(௫;క)
ଵି௣ீ̅(௫;క)

ቁ
௔
ቅ
௕
                (5) 

where 	ܽ > 	0; 	ܾ	 > ݌ , 0	 = 1 − ̅݌ and		̅݌ 	> 	0 are three additional shape parameters. 

;ݔ)ܩ̅ (ߦ = 1 − ;ݔ)ܩ  For each baseline G, the ‘‘KUMO-G’’ cdf is given by (5). The .(ߦ

density function corresponding to (8) is given by 

௞݂௪ெை(ݔ; ܽ, ܾ, (݌ =
ܾܽ(1 − ;ݔ)݃(݌ ;ݔ)ܩ(ߦ ௔ିଵ(ߦ

(1 − ;ݔ)ܩ̅݌ ௔ାଵ((ߦ
ቊ1 − ቆ

;ݔ)ܩ (ߦ
1 − ;ݔ)ܩ̅݌ (ߦ

ቇ
௔

ቋ
௕ିଵ

 

(6) 
 

     Eq. (6) will be most tractable when the cdf (ݔ)ܩ and the pdf ݃(ݔ) have simple 

analytic expressions. Hereafter, a random variable X with density function (6) is denoted 

by	ܺ ∼ ,ܽ)ܱܯݓܭ	 ܾ, ,݌  The hrf of X becomes .(ߦ
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ℎ௞௪ெை(ݔ; ܽ, ܾ, (݌ =
௔௕(ଵି௣)௚(௫;క)ீ(௫;క)ೌషభ

[ଵି௣ீ̅(௫;క)]{[ଵି௣ீ̅(௫;క)]ೌିீ(௫;క)ೌ}
      (7) 

 

   In this context, we propose an extension of the Lindley-Lomax distribution based on 

the family of Kumaraswamy-Marshal Olkin (denoted with the prefix KUMOLL for 

short) distribution. Kumaraswamy-Marshal Olkin distribution, introduced by (Gauss M. 

Cordeiro et al., 2015). They are proposed a new extension of the MO family for a given 

baseline distribution with cdfݔ)ܩ; ;ݔ)ܩ̅ survival function ,(ߦ (ߦ = 1 − ;ݔ)ܩ  and pdf(ߦ

;ݔ)݃   .ߦ		depending on a parameter (ߦ
        

   The rest of this article is organized as follows: in Section 4, we introduce the new 

defined distribution and investigate its basic properties, including the shape properties of 

its density function and the hazard rate function, moments and measurements based on 

the moments. Section 7 discusses the estimation of parameters by the method of 

maximum likelihood. An application of real survival data illustrated in Section 8. Our 

work concluded in Section 9. 

 

4. The Kumaraswamy Marshall-Olkin Flexible Weibull Distribution 
 

 

A random variable X has the cdf of the Kumaraswamy Marshal-Olkin Flexible Weibull 

(‘‘KUMOFW’’) family of distributions by 

;ݔ௄௎ெைிௐ൫ܨ ߬൯ = 1 − ൞1 −ቌ
ଵିୣ୶୮ቆି௘ഀೣష

ഁ
ೣ	ቇ

ଵି௣ୣ୶୮ቆି௘ഀೣష
ഁ
ೣ 	ቇ
ቍ

௔

ൢ

௕

                       (8) 

 

Where ߬ = (ܽ, ܾ, ,݌ ,ߙ ,ܽ) and (ߚ ܾ, (ߙ	݀݊ܽ	݌ > 0 are non-negative shape Parameters, 

ߚ > 0 is positive scale parameter, ݌ = 1 − ̅݌ and  ̅݌ 	> 	0 is the tilt parameter. The 
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௄݂௎ெைிௐ൫ݔ; ߬൯ = ܾܽ(1 − (݌ ൬ߙ +
ߚ
൰	ଶݔ ݁

ఈ௫ିఉ௫	 	exp൬−݁ఈ௫ି
ఉ
௫ 	൰ ൜1 − exp൬−݁ఈ௫ି

ఉ
௫ 	൰ൠ

௔ିଵ

 

൬1 − ݌ ൤1 − exp൬−݁ିݔߙ
ഁ
ೣ 	൰൨൰

ି(௔ାଵ)
ቐ1 − ቌ

ଵିୣ୶୮ቆି௘ݔߙష
ഁ
ೣ 	ቇ

షݔߙ୶୮ቆି௘ୣ݌−1
ഁ
ೣ	ቇ
ቍ

ܽ

ቑ

ܾ−1

    (9)  

 

ܵ௄௎ெைிௐ൫ݔ; ߬൯ = 1 − ;ݔ௄௎ெைிௐ൫ܨ ߬൯ 

                	= ൝1 − ቆ ଵିୣ୶୮	(ି௘ݔߙష
ഁ
ೣ	)

షݔߙ(ି௘	୶୮ୣ	݌−1
ഁ
ೣ 	)
ቇ
௔

ൡ
௕

 

ℎ௄௎ெைிௐ൫ݔ; ߬൯ 	= 	ܾܽ(1 − (݌ ൬ߙ +
ߚ
൰	ଶݔ ݁

ఈ௫ିఉ௫	 	exp൬−݁ఈ௫ି
ఉ
௫ 	൰ ൜1 − exp൬−݁ఈ௫ି

ఉ
௫ 	൰ൠ

௔ିଵ

 

              ൬1 − ݌ ൤1 − exp൬−݁ିݔߙ
ഁ
ೣ 	൰൨൰

ି(௔ାଵ)
ቐ1 − ቌ

ଵିୣ୶୮ቆି௘ݔߙష
ഁ
ೣ	ቇ

షݔߙ୶୮ቆି௘ୣ݌−1
ഁ
ೣ 	ቇ
ቍ

ܽ

ቑ

−1

    (10) 
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Figure 1: Plots of the ܹܨܱܯܷܭ density for selected parameter values. 
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Figure 2: Plots of the ܹܨܱܯܷܭ cdf for selected parameter values. 
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Figure 3: Plots of the ܹܨܱܯܷܭ hazard rate function for selected parameter values. 
 
 

5. Special Distributions 
   

 The following well-known and new distributions are special sub-models of the ܹܨܱܯܷܭ 

distribution. 

 

 Kumaraswamy Flexible Weibull Distribution  

 

  If ݌ = 0, the ܹܨܱܯܷܭ distribution reduces to  

 

௄݂௎ிௐ൫ݔ; ߬൯ = ܾܽ(1 − (݌ ൬ߙ +
ߚ
൰	ଶݔ ݁

ఈ௫ିఉ௫	 	exp൬−݁ఈ௫ି
ఉ
௫ 	൰ ൜1 − exp൬−݁ఈ௫ି

ఉ
௫ 	൰ൠ

௔ିଵ

 

ቊ1 − ൬1− exp൬−݁ݔߙ−
ߚ
൰൰	ݔ

௔

ቋ
௕ିଵ

      (11) 
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which is the Kumaraswamy Flexible Weibull Distribution (KUFW).for ܽ = ܾ = 1 we obtain the 

Flexible Weibull  distribution. 

 

 

 

 

 

 

 

 Marshal-Olikin Flexible Weibull Distribution  

If ܽ = ܾ = 1, the KUMOFW distribution reduces to 

  

ெ݂ைிௐ൫ݔ; ߬൯ =
(ଵି௣)ቀఈା ഁ

ೣమ
	ቁ	௘ഀೣష

ഁ
ೣ	 	ୣ୶୮ቆି௘ഀೣష

ഁ
ೣ	ቇ

ቆଵି௣ቈଵିୣ୶୮ቆି௘ഀೣష
ഁ
ೣ	ቇ቉ቇ

మ                             (12) 

 
 

which is Marshal-Olkin Flexible Weibull Distribution (MOFW).for, ݌ = 0 we obtain the Flexible 

Weibull distribution. 
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Table1. Some Special Distributions 

Distribution ࢻ ࢖ ࢈ ܉ ઺ 

KU Flexible Weibull -- -- 0 -- -- 

MO Flexible Weibull 1 1 -- -- -- 

Exponentiated MO Flexible Weibull -- 1 -- -- -- 

Exponentiated Flexible Weibull -- 1 0 -- -- 

Flexible Weibull 1 1 0 -- -- 

The proportional reversed hazard rate model for Flexible Weibull -- 1 0 -- -- 

The proportional hazard rate model Exponentiated Flexible Weibull 1 -- 0 -- -- 

 

 

6. Expansions for the density function 
 

In this section, we will derive a useful expansion for the KUMOFW “pdf” for brevity of 

notation,by using properties of exponentiated distribution expanding the binomial theorem  
 

  


 



0 !)(

)(1
j

jz
jk
jkkz                              (13) 

 

In equation (9), we can write 
 
 

௄݂௎ெைிௐ൫ݔ; ߬൯ = 	ܾܽ(1 − ߙ൬(݌ +
ߚ
ଶݔ 	൰෍෍෍෍෍݌௧ା௨݁ିݔߙ

ఉ
௫	 	൤exp	(−݁ିݔߙ

ఉ
௫ 	)൨

௝ା௟ା௨ஶ

௨ୀ଴

ஶ

௜ୀ଴

ஶ

௬ୀ଴

ஶ

௧ୀ଴

ஶ

௝ୀ଴

 

 

(−1)௝ା௧ା௬ା௟ା௨ ቀ௔ିଵ௝ ቁ ൫ି(௔ାଵ)௧ ൯ ቀ௕ିଵ௬ ቁ ൫௧ା௔௬ାଵ௟ ൯൫ି௔௬ାଵ௨ ൯  (14)  

 

 

 



  
 

– – 

 
 

- 12 - 
 

7. Properties of Marshall-Olkin Flexible Weibull Distribution 
 

In this section will present some of our density properties by following (9) we obtain: 

 

6.1 Moments 
 

       We hardly need to emphasize the necessity and importance of moments in any statistical 

analysis especially in applied work. Some of the most important features and characteristics of a 

distribution can be studied through moments (e.g., tendency, dispersion, skewness and kurtosis).  

 

Here and henceforth, let ܺ be a ܹܨܱܯܷܭ random variable following (9). The thr  

moment of ܺ can be obtained from (9) as  

  

           

 μ௥ᇱ 	= ∫ ௥ݔ	 			 ௞݂௪ெைிௐ൫ݔ; ߬൯ ݔ݀	
ஶ
଴  

μ௥ᇱ = ,ݕ,ݐ,݆ߟ ݑ݅, 	∫ ݎݔ	 			ቀߙ+ ߚ
ቁ݁	2ݔ

ߚ−ݔߙ
	ݔ 	൤exp ൬−݁ݔߙ−

ߚ
ݔ 	൰൨

ݑ+݅+݆
∞ݔ݀	

0                           (15) 

  

where 

 

,ܽ)௝,௧,௬,௜,௨ߟ ܾ, (݌ = ܾܽ(1 − (݌ ෍ (−1)௝ା௧ା௬ା௜ା௨ ൬
ܽ − 1
݆ ൰൬

−(ܽ + 1)
ݐ ൰൬

ܾ − 1
ݕ ൰൬

ݐ + ݕܽ + 1
݅ ൰൬

1 − ݕܽ
ݑ ൰

ஶ

௝,௧,௬,௜,௨ୀ଴

 

 

 

For (݆ + ݅ + (ݑ > 0 real integer, we obtain  

 

 

൤exp	(−݁ିݔߙ
ഁ
ೣ	)൨

௝ା௜ା௨
=	∑ 	(ିଵ)

ೡ	(௝ା௟ା௨)ೡ

!ݒ 		݁௩(ିݔߙ
ഁ
ೣ	)ஶ

௩ୀ଴ 	             (16) 
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Substituting (16) in equation (15) gives 

 

μ௥ᇱ = නݒ߱ +ߙ)			௥ݔ	 (ݒ+1)ି݁	ݔߙ(ݒ+1)݁(	ଶିݔߚ
ఉ
௫ ݔ݀	

ஶ

଴
 

(17) 

 

where   

߱௩ ,ܽ)ݑ,݅,ݕ,ݐ,݆ߟ	= ܾ, ෍(݌ 	
݆)	ݒ(1−) + ݈ + ݒ(ݑ

!ݒ

∞

0=ݒ

	 

 

We now use the Taylor series expansion for the exponential function given by 

 

(ݒ+1)ି݁
ఉ
௫ 	 = ෍ 	

(−1)௠	(1 + ௠ି(ݔ)		௠(ߚ)	௠(ݒ

݉! 		
ஶ

௠ୀ଴

 

 (18) 

Substituting (18) in equation (17) gives 

 

 

μ௥ᇱ = ߱௩݌௧ା௨ ෍ 	
(−1)௠	(1 + ௠ି(ݔ)		௠(ߚ)	௠(ݒ

݉! 		
ஶ

௠ୀ଴

න +ߙ)			௥ି௠ݔ	 ݔߙ(ݒ+1)݁(	ଶିݔߚ 	 ݔ݀	
ஶ

଴
 

 

 

μ௥ᇱ 	 = ௜ݔ)߭ , ܽ, ܾ, ,݌ (ߚ ൤
ݎ)Ґ		ߙ − ݉ + 1)	

௥ି௠ାଵ(vߙ + 1)௥ି௠ାଵ +
ݎ)Ґ		ߚ − ݉ − 1)	

௥ି௠ିଵ(vߙ + 1)௥ି௠ିଵ൨ 

                            (19)  

 

where 
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௜ݔ)߭ , ܽ, ܾ, ,݌ (ߚ = ߱௩݌௧ା௨ ෍ 	
(−1)௠	(1 + ௠ି(ݔ)		௠(ߚ)	௠(ݒ

݉!
		

ஶ

௠ୀ଴

	 

 

 

6.2 Moment Generating Function 

 

  Let ܺ be a random variable having the KUMOFW density function (9). We now derive a closed 

form expression for the mgf, say M୶(t) =   .ܺ of ,[(ݔݐ)݌ݔ݁]ܧ	
 

(ݐ)௫ܯ = 	න 			(ݔݐ)݌ݔ݁	 ௄݂௎ெைிௐ൫ݔ; ߬൯ ݔ݀	
ஶ

଴
 

                   (20)  

 

Expanding the exponential in Taylor series, we have 

(ݔݐ)݌ݔ݁ =෍
	௥ݐ	
!ݎ ݔ

௥
ஶ

௥ୀ଴

 

 

(ݐ)௫ܯ 	= ෍
	௥ݐ	
!ݎ

ஶ

௥ୀ଴

න 			௥ݔ	 ௄݂௎ெைிௐ൫ݔ; ߬൯ ݔ݀	
ஶ

଴
 

(ݐ)௫ܯ = Υ(ݔ௜, ܽ, ܾ, ,݌ (ߚ ൤
ݎ)Ґ		ߙ − ݉ + 1)	

௥ି௠ାଵ(vߙ + 1)௥ି௠ାଵ +
ݎ)Ґ		ߚ − ݉ − 1)	

௥ି௠ିଵ(vߙ + 1)௥ି௠ିଵ൨	 

            (21) 

where 

Υ(ݔ௜ , ܽ, ܾ, ,݌ (ߚ = ,ܽ)ݑ,݅,ݕ,ݐ,݆ߟ	 ܾ, ݌(݌
௧ା௨ ෍ 	

(−1)௠	(1 + ௠ି(ݔ)	௥ݐ		௠(ߚ)	௠(ݒ

!݉!ݒ !ݎ	 (−1)ି௩(݆ + ݈ + ௩ି(ݑ 		
ஶ

௠,௥,௩ୀ଴

 

 

,ܽ)௝,௧,௬,௜,௨ߟ ܾ, (݌ = 	ܾܽ(1 − (݌ ෍ (−1)௝ା௧ା௬ା௜ା௨ ൬
ܽ − 1
݆ ൰ ൬

−(ܽ + 1)
ݐ ൰ ൬

ܾ − 1
ݕ ൰ ൬

ݐ + ݕܽ + 1
݅ ൰൬

1 − ݕܽ
ݑ ൰

ஶ

௝,௧,௬,௜,௨ୀ଴
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The moment generating function of the ܹܨܱܯܷܭ distribution in (20) and in equations (21) are 

the main results of thr  moment multipling with Taylor factor ∑ 	௧ೝ 	
!ݎ

ஶ
௥ୀ଴ (ݐ)௫ܯ , = ∑ 	௧ೝ 	

!ݎ 	
ஶ
௥ୀ଴ μ௥ᇱ  

6.3 Quantile function and simulation 
 

    We present a method for simulating from the ܹܨܱܯܷܭ distribution (9). Using the method of 

inversion we can generate random numbers from ܹܨܱܯܷܭ, then, the quantile function 

corresponding to (8) where u ∼ U(0, 1) is 

ݑ = 1 −

⎩
⎨

⎧
1 − ൮

1− exp൬−݁ିݔߙ
ఉ
௫ 	൰

1 − ݌ exp൬−݁ିݔߙ
ఉ
௫ 	൰
൲

௔

⎭
⎬

⎫
௕

	 

 

 

After simple calculation this yields 

ܺ௨ =
Ν(ݑ) ± 	ඥΝ(ݑ)ଶ + ߚߙ4

ߙ2
 

         (22) 

 

 

where  

Ν(ݑ) = log ቎logቌ
1 − 	݌ ቂ1 − ൛1 − ଵ/௕ൟଵ/௔ቃ(ݑ)
1 − [1 − {1 − [ଵ/௕}ଵ/௔(ݑ) ቍ቏ 

 

One can use equation (22) to generate random numbers when the parameters ܽ, ܾ, ,݌  are ߚ and ߙ

known. 
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6.4 Skewness and Kurtosis 
      The shortcomings of the classical kurtosis measure are well-known. There are many heavy-

tailed distributions for which this measure is infinite. So, it becomes uninformative precisely 

when it needs to be. Indeed, our motivation to use quantile-based measures stemmed from the 

non-existence of classical kurtosis for many of the Kumaraswamy distributions. 
 

The Bowley’s skewness (see Kenney and Keeping, 1962) is based on quartiles: 

	ܤ =	
ܳ(3/4) − 2ܳ(1/2)	+ ܳ(1/4)

ܳ(3/4)− ܳ(1/4) 	 

and the Moors’ kurtosis (see Moors, 1998) is based on octiles: 

 

	ܯ = 	
ܳ(7/8) − ܳ(5/8) − ܳ(3/8)	+ ܳ(1/8)	

ܳ(6/8) − ܳ(2/8)  

where Q(·) represents the quantile function. 
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Figure 4. Plots of skewness and kurtosis for different value of parameters. 
 

Plots of the skewness and kurtosis for some choices of the parameters as function of b, and for 

some choices of the parameters as function of P, for different value of β andߙ, are shown in 

Figure 4.we can observe that the plots of the skewness and kurtosis decrease when b increases 

for fixed a and when a increases for fixed b. 

6.5 Order Statistics 
 

   The density function ௥݂:௡(ݔ) of the ݅௧௛ order statistic,݂ 	݅	ݎ݋ = 	1, . . . , ݊, from random 

variables ଵܺ, . . . , 	ܺ௡ having density (9), is given by 

 

௥݂:௡൫ݔ; ߬൯ = 	
1	

ఉ(1+ݎ−݊,ݎ)
	݂൫ݔ; ߬൯ൣܨ൫ݔ; ߬൯൧

1−ݎ
ൣ1 − ;ݔ൫ܨ ߬൯൧

 (22)            	ݎ−݊

 

For ݊ > 0 non-real integer, we obtain  
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ൣ1 − ;ݔ൫ܨ ߬൯൧
௡ି௥

= ∑ ൫௡ି௥௜ ൯	(−1)
௜௡ି௥

௜ୀ଴ ;ݔ൫ܨൣ ߬൯൧
௜
                                 (23) 

 

Substituting (23) in equation (22) gives  

 

௥݂:௡൫ݔ; ߬൯ =
1	

,ݎ)ߚ ݊ − ݎ + 1) 	݂൫ݔ; ߬൯෍
ቀ
݊ − ݎ
݅

ቁ	(−1)௜
௡ି௥

௜ୀ଴

;ݔ൫ܨൣ ߬൯൧
௜ା௥ିଵ

 

௥݂:௡൫ݔ; ߬൯ =	෍
(−1)௜					݊!	

݅! ݎ)		 − 1)!		(݊ − ݎ − 1)!		
௡ି௥

௜ୀ଴

;ݔ൫ܨൣ ߬൯൧
௜ା௥ିଵ

		݂൫ݔ; ߬൯ 

            (24) 

7 Estimation and Information Matrix 
 

    In this section, we discuss maximum likelihood estimation and inference for the KUMOFW 

distribution. Let nxxx ,,, 21  be a random sample fromܺ~ܹܨ݋ܯݓܭ(߬). The log-likelihood 

function for ߬ = (ܽ, ܾ, ,݌ ,ߙ   :written as (ߚ

 

ℓ൫߬൯ = ݊ log ܽ + ݊ log ܾ + ݊ log(1 − (݌ +෍൤log ൬ߙ+
ߚ
ଶݔ 	൰൨

௡

௜ୀଵ

	

           +∑ [log ௡[(௜ݔ)߭
௜ୀଵ + ∑ log߱(ݔ௜)௡

௜ୀଵ + (ܽ − 1)∑ log[1 − ௡[(௜ݔ)߱
௜ୀଵ  

           −(ܽ + 1)∑ log{1 − 1]݌ − ௡{[(௜ݔ)߱
௜ୀଵ + (ܾ − 1)∑ log ቄ1 − ቂ ଵିఠ(௫೔)

ଵି௣ఠ(௫೔)
ቃ
௔
ቅ௡

௜ୀଵ       (25) 

 

The score vector ܷ൫߬൯ = ቀడℓ
డ௔
	డℓ
డ௕
	డℓ
డ௣
	డℓ
డఈ
	 డℓ
డఉ
		ቁ

்
, where the components corresponding to the 

parameters in ߬ are given by differentiating (25) . by setting ߱(ݔ௜) = exp	(−݁ିݔߙ
ഁ
ೣ 	), 

(௜ݔ)߭ = ିݔߙ݁
ഁ
ೣ and ݊(ݔ௜) =

ଵିఠ(௫೔)
ଵି௣ఠ(௫೔)
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߲ℓ
߲ܽ =

݊
ܽ +෍log[1 − [(௜ݔ)߱

௡

௜ୀଵ

−෍log{1 − 1]݌ − {[(௜ݔ)߱
௡

௜ୀଵ

− (ܾ − 1)෍
௔(௜ݔ)݊ log (௜ݔ)݊
1 − ௔(௜ݔ)݊

௡

௜ୀଵ

 

 

߲ℓ
߲ܾ =

݊
ܾ +෍log(1 − (௔(௜ݔ)݊

௡

௜ୀଵ

 

 

߲ℓ
݌߲ =

−݊
1 − ݌ +

(ܽ + 1)෍
1 (௜ݔ)߱−

1 − 1]݌ − [(௜ݔ)߱

௡

௜ୀଵ

+ (ܾ − 1)෍
1](௜ݔ)௔ିଵ߱(௜ݔ)݊	ܽ	− − [(௜ݔ)߱
[1 − ௔][1(௜ݔ)݊ − ଶ[(௜ݔ)߱݌

௡

௜ୀଵ

 

 

߲ℓ
ߙ߲ =෍

1

ߙ + ߚ
௜ଶݔ

௡

௜ୀଵ

+෍ݔ௜

௡

௜ୀଵ

−෍ݔ௜

௡

௜ୀଵ

(௜ݔ)߭ + (ܽ − 1)෍
(௜ݔ)߭(௜ݔ)߱	(௜ݔ)
൫1 − ൯(௜ݔ)߱

௡

௜ୀଵ

 

 

ܽ)݌+ + 1)෍
(௜ݔ)߭(௜ݔ)߱	(௜ݔ)
1 − 1]݌ − [(௜ݔ)߱

௡

௜ୀଵ

− ܽ(ܾ − 1)෍
௔ିଵ(௜ݔ)݊

(௜ݔ)߲݊
ߙ߲

1 − ௔(௜ݔ)݊

௡

௜ୀଵ

 

 

where                                                                                       (26) 

 

(௜ݔ)߲݊
ߙ߲ =

[1 − [(݅ݔ)߭	(௜ݔ)߱	(݅ݔ)][(௜ݔ)߱݌ − [1 [(݅ݔ)߭	(௜ݔ)߱	(݅ݔ)݌][(௜ݔ)߱−
[1 − ଶ[(௜ݔ)߱݌

 

 

 

߲ℓ
ߚ߲ =෍

௜ଶݔ/1

ߙ + ߚ
௜ଶݔ

௡

௜ୀଵ

+෍
1
௜ݔ

௡

௜ୀଵ

−෍
1
௜ݔ

௡

௜ୀଵ

(௜ݔ)߭ − (ܽ − 1)෍
1
(௜ݔ)

(௜ݔ)߭(௜ݔ)߱	
[1 − [(௜ݔ)߱

௡

௜ୀଵ

 

 

ܽ)݌− + 1)෍
1
(௜ݔ)

(௜ݔ)߭(௜ݔ)߱	
1 − 1]݌ [(௜ݔ)߱−

௡

௜ୀଵ

− ܽ(ܾ − 1)෍
௔ିଵ(௜ݔ)݊

(௜ݔ)߲݊
ߚ߲

1 − ௔(௜ݔ)݊

௡

௜ୀଵ
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Where     

(௜ݔ)߲݊
ߚ߲ =

[1 − [(௜ݔ)߱݌ ൤
1
(௜ݔ)

൨(݅ݔ)߭	(௜ݔ)߱	 + [1 − [(௜ݔ)߱ ൤݌	
1
(௜ݔ)

൨(݅ݔ)߭	(௜ݔ)߱	

[1 − ଶ[(௜ݔ)߱݌
 

 

 

   The maximum likelihood estimates (MLEs) of the parameters are the solutions of the 

nonlinear equations (26), 0=  which are solved iteratively, these solutions will yield 

the ML estimators for൫ ොܽ, ෠ܾ, ,̂݌  መ൯. For the parameters KWMOFW distribution, allߚ	݀݊ܽ	ොߙ

the second order derivatives exist. Thus we require the 5 × 5 unit observed information 

matrix 
 

ܬ = ൫߬൯ܬ =

⎣
⎢
⎢
⎢
⎢
⎡ ௔݆௔݆௕௔
௣݆௔

ఈ݆௔
݆ఉ௔

݆௔௕
݆௕௕
݆௣௕
݆ఈ௕
݆ఉ௕

௔݆௣
݆௕௣
௣݆௣

ఈ݆௣
݆ఉ௣

݆௔ఈ
݆௕ఈ
௣݆ఈ

ఈ݆ఈ
݆ఉఈ

݆௔ఉ
݆௕ఉ
݆௣ఉ
݆ఈఉ
݆ఉఉ⎦

⎥
⎥
⎥
⎥
⎤

                      (27) 

      

     Using MATHCAD software to solve the inverse dispersion matrix analytically, these 

solutions will yield asymptotic variance and covariance of these ML estimators for 

൫ ොܽ, ෠ܾ, ,̂݌ መ൯ߚ	݀݊ܽ	ොߙ  and showing in table 5, using (27), we approximate )100(1   

percentage, confidence intervals for are determined respectively as 

  

ොܽ ± ߛܼ
2
ට݆ܽෞܽ											 ෠ܾ ± ߛܼ

2
ට݆ܾෞܾ ̂݌											 ± ߛܼ

2
ට݆݌݌ෞ 	 

ොߙ ± ߛܼ
2
ට݆ߙߙෞ											ߚመ ± ߛܼ

2
ට݆ߚෝ 								 
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8 Empirical Application 
 

In this section we use a real data set of a KUMOFW distribution. parameters are 

estimated via the MLE method described in Section (7). Using the MATHCAD software. 

First we describe the data sets. Then we report the the MLEs (and the corresponding 

standard errors in parentheses) of the parameters and we shall apply formal goodness-of-

fit tests to verify which distribution fits better the real data sets with other various 

distributions including the Akaike information criterion (AIC), consistent Akaike 

information criterion (CAIC), Bayesian information criterion (BIC). In general, the 

smaller values of these statistics is the better fit to the data. We shall compare the 

proposed KUMOFW distribution with several other lifetime distributions as beta-Weibull 

(BW) [5], the Kumaraswamy-Weibull (KUW) [7], the Marshall-Olkin extended Weibull 

(MOW) [6] distributions . Finally, we perform the Kolmogorov-Smirnov (K-S) statistic 

and )ˆ(2   tests . 

 

 

"Data of carbon fibers" 
     

     The real data set was originally reported by Badar and Priest [10], which represents 

the strength measured in GPa for single carbon fibers and impregnated at gauge lengths 

of 1, 10, 20 and 50 mm. Impregnated tows of 100 fibers were tested at gauge lengths of 

20, 50, 150 and 300 mm. Here, we consider the data set of single fibers of 20 mm in 

gauge with a sample of size 63. The data are:  

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 

2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 
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2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 

2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 

3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 

3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 

4.225, 4.395, 5.020 
 

Table  2: MLEs of the model parameters (standard errors in parentheses)and the 

statistics AIC, BIC and CAIC for Carbon Fibers 

Distributions Parameters Statistic 

ොܽ ෠ܾ ߙ ̂݌ො ߚመ AIC BIC CAIC 

KwMOFW 
6.155 111.536 0.007 0.121 2.205 

111.714 110.71 112.766 
(0.573) (16.98) (0.074) (0.019) (0.295) 

MOFW 
1 1 0.293 0.115 2.148 

153.598 152.595 154.651 
---- ---- (3.71) (20.698) (2.152) 

Flexible 

Weibull 

1 1 1 0.115 2.155 
289.691 288.687 290.743 

---- ---- ---- (0.012) (0.105) 

KwMO- 

Fréchet 

0.053 1.046 0.0203 ---- 4.066 
121.867 132.583 122.920 

(0.084) (0.901) (0.054) ---- (1.941) 

Beta-Fréchet 

(BFr) 

12.847 20.762 ---- ---- 1.167 
120.594 129.166 121.283 

(91.822) (64.327) ---- ---- (1.926) 

Exponentiated- 

Fréchet (EFr) 

---- ---- ---- 7.031 2.364 
118.700 125.130 119.107 

---- ---- ---- (8.504) (1.027) 
Marshall-Olkin 

Extended 

Fréchet 

(MOFr) 

---- ---- 10.343 ---- 7.906 

119.746 126.175 120.153 ---- ---- (12.421) ---- (1.142) 

Fréchet (Fr) 
---- ---- ---- ---- 5.433 

121.804 126.091 122.004 
---- ---- ---- ---- (0.508) 

Table 3: Covariance of ML estimators for ൫ࢇෝ, ,෡࢈ ,ෝ࢖  ෡൯ࢼ	ࢊ࢔ࢇ	ෝࢻ
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൫ݒ݋ܥ ොܽ, ෠ܾ൯ = ൫ݒ݋ܿ	 ෠ܾ, ොܽ൯ = ,̂݌൫ݒ݋ܥ 0.261−	 መ൯ߚ = መߚ൫ݒ݋ܿ	 , ൯̂݌ = 				5.569 × 10ିଷ 

)ݒ݋ܥ ොܽ, (̂݌ = ,̂݌)ݒ݋ܿ	 ොܽ) = ,ොߙ൫ݒ݋ܥ 0.028−	 መ൯ߚ = መߚ൫ݒ݋ܿ	 ො൯ߙ, = −4.057 × 10ିଷ 

)ݒ݋ܥ ොܽ, (ොߙ 	= ,ොߙ)ݒ݋ܿ	 ොܽ) 	= 				2.499 × 10ିସ   

൫ݒ݋ܥ ොܽ, መ൯ߚ = መߚ൫ݒ݋ܿ	 , ොܽ൯ = 						0.102   

൫ݒ݋ܥ ෠ܾ, ൯̂݌ = ,̂݌൫ݒ݋ܿ	 ෠ܾ൯ 		= −0.412   

,෠ܾ)ݒ݋ܥ (ොߙ 	= ,ොߙ)ݒ݋ܿ	 ෠ܾ) 	= 	−0.113   

൫ݒ݋ܥ ෠ܾ, መ൯ߚ = መߚ൫ݒ݋ܿ	 , ෠ܾ൯ = 						0.368   

,̂݌)ݒ݋ܥ (ොߙ = ,ොߙ)ݒ݋ܿ	 (̂݌ = 4.637 × 10ିସ  

Table 2, lists the MLEs (and the corresponding standard errors in parentheses) of the 

parameters of all the models and the statistics AIC, BIC and CAIC for survival times (in 

years) of a group of patients data set, we notice that the proposed KUMOFW model 

presents the smallest values of the statistics AIC, BIC and CAIC, and hence should be 

chosen as the best model among all the distributions to fit the data set. 
 

Table  4: the Kolmogorov-Smirnov (K-S) statistic and )ˆ(2  . 
 

Data 
Model KUMOFW MOFW 

Flexible 

Weibull 

Carbon 

Fibers 

SK   0.984 0.766 1.00 

)ˆ(2   101.714 143.598 279.691 

 

  

9 Concluding Remarks 
  

 The well-known generalized Pareto distribution, is extended by introducing three extra 

shape parameters, thus defining the Kumaraswamy Marshal Olikin Flexible Weibull 

distribution (KUMOFW) having a broader class of hazard rate and density functions. This 
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is achieved by taking (5) as the baseline cumulative distribution of the Kumaraswamy 

Marshal Olikin distribution. A detailed study on the mathematical properties of the new 

distribution is presented. The new model includes as special sub-models as Marshal Olikin 

Flexible Weibull distribution (MOFW) , Flexible Weibull (FW) and Weibull distributions. 

The estimation of the model parameters is approached by maximum likelihood and the 

observed information matrix is obtained. An application to a real data set indicates that the 

fit of the new model is superior to the fits of its principal sub-models. We hope that the 

proposed model may be interesting for a wider range of statistical research. 
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Abstract 
 
          In this paper, Bayes estimators for the parameters, 
reliability and hazard rate functions of the generalized Burr 
distribution are derived. Point and credible interval 
estimation are considered based on Type II censored data 
under a symmetric and asymmetric loss functions. Also, 
Bayesian prediction for a future observation is obtained 
using two-sample prediction technique. Finally, numerical 
examples are given via Markov Chain Monte Carlo 
simulation study and some interesting comparisons are 
presented to illustrate the theoretical results. Moreover, the 
results are applied on real data sets. 
 
Keywords: Generalized Burr distribution; loss functions; 
Type II censored data; Bayesian prediction; Bayesian 
predictive density function; Markov Chain Monte Carlo 
simulation. 
 
1. Introduction 
 
          Kibria and Shakil (2011) introduced the five-
parameter family of Burr Type distributions based on the 
generalized Pearson differential equation. This family is 
considered more flexible and a natural generalization of the 
Burr, generalized beta Type II (GBII) and also other 
distributions. They referred to this distribution as the 
generalized Burr (GBurr) distribution. It is observed that 
the proposed distribution is skewed to the right and have 
most of the properties of skewed distributions. 
 
The probability density function (pdf) and cumulative 
distribution function (cdf) of the GBurr(ߠ) distribution are 
given, respectively, by 

 ݂൫ݔ; ൯	ߠ = ߮൫ߠ൯		ݔఏరିଵ 	 ቂ1 +	ఏఱ
ఏమ
ቃ	ఏభݔ	

ିఏయ
,																					 

ݔ                                        > 0;			൫	ߠ > 0൯,                       (1) 

and 

;ݔ൫ܨ  ൯	ߠ = ߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗షభ೗ ቁ	ቀഇఱഇమ

ቁ
೗	
		௫(ഇరశഇభ೗)

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ , 

ݔ                                           > 0;		൫	ߠ > 0൯,                    (2) 

where 

߮൫ߠ൯ =
ఏభ	ቀ

ഇఱ
ഇమ
ቁ
൬ഇరഇభ

൰

௯ቀഇరഇభ,	ఏయି	
ഇర
ഇభ
ቁ
ߠ		   , = ,ଵߠ) ,ଶߠ ,ଷߠ ,ସߠ        (3)											ହ)ᇱߠ

and	߀(. , . ) denotes the beta function. 
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The reliability function (rf) and hazard rate function (hrf) 
are given, respectively, by 

(ݔ)ܴ = 1 − ൭߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗షభ೗ ቁ

	
	ቀഇఱഇమ

ቁ
೗
		௫(ഇరశഇభ೗)

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൱	,              

ݔ                                              > 0; 	൫	ߠ > 0൯,                  (4) 

and 

ℎ(ݔ) = ௙(௫)
ோ(௫)

= ൤߮൫ߠ൯		ݔఏరିଵ 	ቂ1 +	ఏఱ
ఏమ
ቃ	ఏభݔ	

ିఏయ
	൨		                               

                                  

       	× ൥1 − ߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗షభ೗ ቁ

	
		ቀഇఱഇమ

ቁ
೗
		௫(ഇరశഇభ೗)

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

ିଵ

,			                                    

                                                                                                
ݔ	                                                  > 0; 	൫	ߠ > 0൯.             (5)  
 
          The GBurr(ߠ)	distribution is related to a wide range 
of well-known distributions such as the generalized beta 
Type II, Lomax or compound gamma, inverse Lomax, 
Gompertz, F-distribution, Burr Type XII,  Pareto Type I, 
exponential, Rayleigh, beta Type I, compound Gompertz, 
Weibull, Dagum, inverted beta (beta Type II), gamma, 
compound Weibull, chi-squared, half normal, half standard 
normal, Log-Logistic (Fisk) and Type I generalized logistic 
distributions.[For more details see, Kibria and Shakil 
(2011) and AL-Sayed (2017)].  
 
          The Burr distributions attract special attention in life 
testing, reliability analysis and hypothesis testing as it is 
applied in several areas such as economics, forestry, 
exotoxicology and environmetrics among others. [For more 
details about the Burr distributions, see, Surles and Padgett 
(2005), Pushkarna et al. (2013), Cordeiro et al. (2014), 
Gomes et al. (2015), Para et al. (2015), Merovci et al. 
(2016), Behairy et al. (2016), Cordeiro et al. (2016) and 
Kim et al. (2016)]. 

 
          Bayesian approach of Burr distributions was 
discussed by several authors. See, for example, Paranaíba 
et al. (2011), Paranaíba et al. (2012) and Ahmad et al. 
(2015). The squared error loss (SEL) function is the most 
popular symmetric loss function used in literature.  The 
symmetric nature of SEL function gives equal weight to 
over and under estimation of the parameters. It takes the 
form 
 
,∗ܾ)ܮ ܾ	) = ܿ(ܾ∗ − ܾ	)ଶ,                                                                                             
 
where c denotes a constant and  ܾ∗ is an estimator. The 
Bayes estimator under SEL function is the mean of the 
posterior distribution and takes the form 

 ܾ(ௌா)∗ = ൯ݔ൫ܾหܧ = ∫ ܾ௕   ܾ݀.                                (6)	൯ݔ൫ܾหߨ	
                                                           
In life testing, over estimation may be more serious than 
under estimation or vice versa. Varian (1975) suggested the 
use of the linear exponential (LINEX) loss function; as an 
asymmetric loss function, to be of the form 
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,∗b)ܮ b) = ݁జ(ୠ∗ି	ୠ) − ߭(b∗ − b) − 1,                       ߭ ≠ 0	,                                           
                                    
under LINEX loss function, the Bayes estimator  ܾ(௅ூோ௑)∗  

of ܾ is given by 
 
ܾ(௅ூோ௑)∗ = ିଵ

జ
	ln	ܧ൫݁ିజ௕หݔ൯,	                                           (7)                                                                                  

 
where ܧ൫݁ିజ௕หݔ൯ stands for posterior expectation. [See, 
Zellner (1986)].  
 
          The general problem of prediction may be described 
as that of inferring the values of unknown observables 
(future observations, known as future sample), or functions 
of such variables, from current available observations, 
known as informative sample. Prediction has been applied 
in a variety of disciplines such as medicine, engineering, 
business, economic and other areas. [For more details, see 
Aitchison and Dunsmore (1975), AL-Hussaini (2010), AL-
Hussaini and Hussein (2011), AL-Hussaini and Ateya 
(2012) and Sancetta (2012)]. 
 
          This paper is organized as follows: In Section 2, 
point and credible intervals of the parameters, rf and hrf 
based on informative priors are considered. The two-
sample Bayesian prediction is used to predict future 
observables from GBurr population in Section 3. In Section 
4, Monte Carlo simulation study is performed to investigate 
the results of Bayesian estimation and prediction. Two 
applications are used in Section 5 to demonstrate how the 
proposed methods can be used in practice. 
 
2. Bayesian Estimation 
 

In this section, the Bayesian point and credible 
intervals estimation for the parameters, rf and hrf of the 
GBurr(ߠ) distribution are derived. 

Suppose that  ܺ(ଵ) ≤ ܺ(ଶ) ≤ ⋯ ≤ ܺ(௥) is a censored 
sample of size r obtained from a life-test on n items (Type 
II censored sample) whose lifetimes have the GBurr(ߠ) 
distribution, then the likelihood function (LF) is given by 
 
൯ݔหߠ൫ܮ  ∝ ߰൫ߠ, ,ߠ߶൫	൯ݔ                                                                                                                       (8)	൯,(௥)ݔ	
                                                                                                                                                                                   
where 

	߰൫ߠ, ൯ݔ = ቈ∏ ቆ߮൫ߠ൯	ݔ(௜)
ఏరିଵ 	 ቂ1 + 	ఏఱ

ఏమ
(௜)ݔ	
ఏభቃ

–ఏయ
ቇ௥

௜ୀଵ ቉			 

 and 
 
߶൫ߠ, ൯(௥)ݔ	 =

൦1 − ൥߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ	೗షభ೗ ቁ		ቀഇఱഇమ

ቁ
೗
		௫(ೝ)

(ഇరశഇభ೗)

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩൪

௡ି௥

.       (9) 

                                 
Assuming that the parameters ߠ are unknown and 

independent. Then the joint prior distribution, of ߠ,	is given 
by 
൯ߠ൫ߨ ∝ ∏ ௝൯ହߠ൫ߨ

௝ୀଵ ,           ݆ = 1, 2,… , 5.	                      (10)                                      
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Considering the prior knowledge of the vector of 
parameters	ߠ, is adequately represented by conjugate prior 
which is the inverted beta (beta Type II) distribution with 
parameters ߙ௝ and ߚ௝. Then the joint prior distribution of all 
the unknown parameters has a joint pdf given by 

ߨ  ቀ;ߠ	ߙ, ቁߚ = ∏ ൤ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ(1 + ହ							௝)ି(ఈೕାఉೕ)൨,ߠ

௝ୀଵ  

௝ߠ              > 0;	൫ߙ௝, ௝ߚ > 0൯,					݆ = 1, 2, … , 5,               (11) 

where ߙ௝	and	ߚ௝ are the hyper- parameters of the joint prior 
distribution. 

Combining the LF in (8) and the joint prior distribution 

given by (11), then the joint posterior density of the 

parameters ߠ, given ݔ = ,ଵݔ) ,ଶݔ … ,  ௥)  is given byݔ

 

൯ݔหߠ൫ߨ  = ,ߠ൫߰	ܭ	 ,ߠ߶൫	൯ݔ  ൯(௥)ݔ	

             × ൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ(1 + ହ	௝)ି(ఈೕାఉೕ)൰ߠ

௝ୀଵ ൨,    (12)                                                                        

where  

ଵିܭ  = ∫ ߰൫ߠ, ,ߠ߶൫	൯ݔ ఏ	൯(௥)ݔ	 		             

        × ൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ(1 + ହ	௝)ି(ఈೕାఉೕ)൰ߠ

௝ୀଵ ൨  (13)   ,	ߠ݀

                               

where	߰൫ߠ, ,ߠ߶൫	and	൯ݔ    ,൯ are given by (9)(௥)ݔ	

∫ = 	∫ 	∫ ∫ 	∫ ∫ 		
ఏఱ

	
ఏర

	
ఏయ

	
ఏమ

	
ఏభ

	
ఏ          and     

ߠ݀ =  .                                         (14)	ଵߠ݀		ଶߠ݀	ଷߠ݀	ସߠ݀	ହߠ݀

2.1 Point estimation  

Bayes estimators are considered under two different 
loss functions, SEL function as a symmetric loss function 
and LINEX loss function as an asymmetric loss function. 
The Bayes estimators of the parameters, rf and hrf under 
SEL function and LINEX loss function can be obtained 
from (6), (7) and (12) as given below 

∗(ௌா)ߜ  = ൯ݔหߜ൫ܧ = ∫ ఏߜ  ߠ݀	൯ݔหߠ൫ߨ	

      	= ∫ ఏߜ ,ߠ൫߰	ܭ ,ߠ߶൫	൯ݔ  ൯(௥)ݔ	

      × ൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ(1 + ହ	௝)ି(ఈೕାఉೕ)൰ߠ

௝ୀଵ ൨                                                                                                                                                                (15)      ,ߠ݀

and             

∗(୐୍୒୉ଡ଼)ߜ = ିଵ
జ
	ln	 ∫ ݁ିజఋ 		ఏ ,ߠ൫߰	ܭ ,ߠ߶൫	൯ݔ   	൯(௥)ݔ	

           × ൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ(1 + ହ	௝)ି(ఈೕାఉೕ)൰ߠ

௝ୀଵ ൨                                                (16) ,ߠ݀

where ߜ is ߠ௝; 	݆ = 1, 2, … , 5, rf or hrf, respectively.  
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2.2 Credible intervals  

The Bayesian analog to the confidence interval is 
called credible interval. In general, a two-sided 100(1-߬)% 
credible intervals of ߠ, are given by  
 

൯ݔ௝൫ܮൣܲ  < ௝ߠ < ௝ܷ൫ݔ൯หݔ	൧ = ∫ ൯ݔ௝หߠ	൫ߨ
௎ೕ൫௫൯
௅ೕ൫௫൯

 ௝ߠ݀

                                            = 1 − ߬,       j=1, 2, …,5,    (17) 
 
where ܮ௝(ݔ) and	 ௝ܷ(ݔ) are the lower and upper limits. 
 

Since, the joint posterior distribution is given by (12), 
then a two-sided 100(1-߬)% credible intervals of ߠ , as 
given below 
ℓߠ)ܲ > ൯ݔ൯หݔℓ൫ܮ = ∫ 		∫ఏೕ ,ߠ൫߰	ܭ	 ,ߠ߶൫	൯ݔ 	൯(௥)ݔ	

∞
௅ℓ൫௫൯

       

            × ൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ(1 + ହ	௝)ି(ఈೕାఉೕ)൰ߠ

௝ୀଵ ൨   ℓߠ௝݀ߠ݀

                          = 1 − ఛ
ଶ
,                                                 (18)                                             

and 

ℓߠ	)ܲ > ℓܷ൫ݔ൯หݔ൯ = ∫ 		∫ఏೕ ,ߠ൫߰	ܭ	 ,ߠ߶൫	൯ݔ 	൯(௥)ݔ	
∞
௎ℓ൫௫൯

       

            × ൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ(1 + ହ	௝)ି(ఈೕାఉೕ)൰ߠ

௝ୀଵ ൨   ℓߠ௝݀ߠ݀

                              = ఛ
ଶ
,                                                    (19) 

                                                                                        

where ℓ ≠ ݆  and   ℓ, j=1,2,…,5. 

3. Bayesian Two-Sample Prediction 

Considering that ܺ(ଵ) ≤ ܺ(ଶ) ≤ ⋯ ≤ ܺ(௥) are the 
first r ordered life times in a random sample of n 
components (Type II censoring) whose failure times are 
identically distributed as a random variable X having the 
GBurr(ߠ) distribution, informative sample, given by (1) 
and  that (ܻଵ), 	 (ܻଶ), … , (ܻ௠) is a second independent random 
sample (of size m) of future observables from the same 
distribution. Our aim is to predict a statistic in the future 
sample based on the informative sample.  

 
For the future sample of size m, let (ܻ௦) denotes the ݏ௧௛ 
order statistic,	1 ≤ ݏ ≤ ݉. The pdf of  (ܻ௦) is given by 
 

ℎ	൫ݕ(௦)หߠ൯ (௦)ݕ		൯ߠ൫߮	(ݏ)ܦ	 =
ఏరିଵ		[1 + ఏఱ

ఏమ
(௦)ݕ	
ఏభ	]ିఏయ 

               		× ൥߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
			௬(ೞ)

(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௦ିଵ

  

        ×	൥1 − 	߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗	షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
	௬(ೞ)
(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௠ି௦

, 



  
  
  
  
  
  

– – 

 

- 34 - 
 

(௦)ݕ                                      > 0; ൫	θ 	> 0	൯,	                   (20)                      

where  

(ݏ)ܦ = s൫௠௦ ൯ =
୫!

(ୱିଵ)!(୫ିୱ)!
= ଵ

௯(௦,௠ି௦ାଵ)
	       and    

ݏ                                 = 1, 2, 3, … ,݉.                             (21)                                                

The Bayesian predictive density (BPD) function of  (ܻ௦) 
given ݔ is given by 

ℎ൫ݕ(௦)หݔ൯ = ∫ఏ	ℎ	൫ݕ(௦)หߠ൯	ߨ൫ߠหݔ൯	݀(22)                           ,ߠ 

                                                       
 where 

∫ఏ	and	݀ߠ are given by (14), ݏ = 1, 2, 3,… ,݉,                                                                            

 ℎ	൫ݕ(௦)หߠ൯ and	ߨ൫ߠหݔ൯ are respectively the conditional 
predictive density of the  ݏ௧௛ order lifetime and the joint 
posterior density. 

The BPD of the future observation 	 (ܻ௦) given ݔ  can 
be obtained by substituting (12) and (20) into (22) as given 
below  

 ℎ൫ݕ(௦)หݔ൯ = ∫ఏ	ܭ	(ݏ)ܦ	߮൫ߠ൯		߰൫ߠ,  		൯ݔ

               × ߶൫ߠ, (௦)ݕ		൯(௥)ݔ	
ఏరିଵ 	 ቂ1 + ఏఱ

ఏమ
(௦)ݕ	
ఏభ	ቃ

ିఏయ
       

              	× 	൥߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
						௬(ೞ)

(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௦ିଵ

  

             

     ×	൥1 − 	߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗	షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
						௬(ೞ)

(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௠ି௦

		 

      × ൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ൫1 + ௝൯ߠ

ି(ఈೕାఉೕ)൰	ହ
௝ୀଵ ൨                                       (23)    		,ߠ݀

                                   

where	߮൫ߠ൯	is	given	by	(3), ߰൫ߠ, ,ߠ߶൫	and	൯ݔ  ൯ are(௥)ݔ	

given by (9),  ିܭଵ is given by (13) and (ݏ)ܦ is given by 

(21).  

3.1 Point prediction  

Based on Type II censoring, Bayesian prediction is 

considered under two types of loss functions SEL function, 

as a symmetric loss function, and LINEX loss function, as 

an asymmetric loss function. Then, the Bayes predictive 

estimator (BPE) for the future observation	 (ܻ௦), under SEL 

function is given by 

ො(௦)(ௌா)ݕ  = = ൯ݔห(௦)ݕ൫ܧ ∫௬(ೞ)  (௦)ݕ݀	൯ݔห(௦)ݕℎ൫	(௦)ݕ	

             =	∫ఏ∗ ,ߠ߰൫	൯ߠ൫߮	(ݏ)ܦ	ܭ		  			൯ݔ
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            × ߶൫ߠ, (௦)ݕ		൯(௥)ݔ	
ఏర 	 ቂ1 + ఏఱ

ఏమ
(௦)ݕ	
ఏభ	ቃ

ିఏయ
 

           	× ൥߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
			௬(ೞ)

(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௦ିଵ

 

      	×	 ൥1 − 	߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗	షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
			௬(ೞ)

(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௠ି௦

		   

×	൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ൫1 + ௝൯ߠ

ି(ఈೕାఉೕ)൰	ହ
௝ୀଵ ൨  (24)          ,∗ߠ݀

                                                           

and the BPE of the future observation (ܻ௦),	under LINEX 

loss function is given by 

ො(௦)(୐୍୒୉ଡ଼)ݕ  =
ିଵ
జ
	ln	ܧ൫exp൫−߭ݕ(௦)൯ หݔ൯ 

                  =	ିଵ
జ
	ln	∫

௬(ೞ)
exp൫−߭ݕ(௦)൯ 	ℎ൫ݕ(௦)หݔ൯	݀ݕ(௦)        

                 	= ିଵ
జ
	ln	∫ఏ∗ܭ	 exp൫−߭ݕ(௦)൯ (௦)ݕ		൯ߠ൫߮	(ݏ)ܦ	

ఏరିଵ	 

× ߰൫ߠ, ,ߠ߶൫	൯ݔ ൯(௥)ݔ	 ൤1 +
ହߠ
ଶߠ
(௦)ݕ	
ఏభ	൨

ିఏయ
 

              	× ൥߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
			௬(ೞ)

(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௦ିଵ

     

     				×	 ൥1 − 	߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗	షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
			௬(ೞ)

(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௠ି௦

 

      × ൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ൫1 + ௝൯ߠ

ି(ఈೕାఉೕ)൰	ହ
௝ୀଵ ൨                                                                         (25)    ,∗ߠ݀

where 

 	∫ఏ∗ = ∫௬(ೞ) 	∫ఏఱ∫ఏర∫ఏయ∫ఏమ∫ఏభ												and		 

∗ߠ݀ =  (26)                                  .(௦)ݕହ݀ߠ݀	ସߠଷ݀ߠ݀	ଶߠଵ݀ߠ݀	

Special cases: 

I. If ݏ = 1, in (24, 25), one can predict the minimum 
observable, (ܻଵ), which represents the first failure 
time in a future sample of size ݉, under SEL 
function and LINEX loss function.  

II. If ݏ = ݉, in (24, 25), one can predict the maximum 
observable, (ܻ௠), which represents the largest failure 
time in a future sample of size ݉, under SEL 
function and LINEX loss function. 

III. If ݏ = ௠ାଵ
ଶ

, in (24, 25), one can predict the median 
observable in odd case, ܻቀ೘శభ

మ ቁ, which represents the 

median failure time in a future sample of size ݉, 
under SEL function and LINEX loss function. 

3.2 Bayesian prediction bound 

A 100(1-߬)% Bayesian prediction bounds (BPB) for 
the future observation	 (ܻ௦), such that 
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	ܲ൫ܮ(௦)(ݔ) < 	 (ܻ௦) <	 (ܷ௦)(ݔ)หݔ൯ = 1 − ߬, are given, 
respectively, by 

 ܲ൫	 (ܻ௦) > ൯ݔ൯หݔ൫(௦)ܮ = ∫ 	∫ఏ	ܭ	(ݏ)ܦ	߮൫ߠ൯		ݕ(௦)
ఏరିଵ			ஶ

௅(ೞ)൫௫൯
 

                                × 	߰൫ߠ, ,ߠ߶൫	൯ݔ ൯(௥)ݔ	 ቂ1 +
ఏఱ
ఏమ
(௦)ݕ	
ఏభ	ቃ

ିఏయ
                          

                    	× ൥߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
௬(ೞ)
(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௦ିଵ

 

      	× 	 ൥1 − 	߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗	షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
			௬(ೞ)

(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௠ି௦

		 

                 × ൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ൫1 + ௝൯ߠ

ି(ఈೕାఉೕ)൰	ହ
௝ୀଵ ൨  (௦)ݕ݀

                            = 1 − ఛ
ଶ
,                                                    (27)                                                                                              

and  

 ܲ൫ (ܻ௦) > (ܷ௦)(ݔ)หݔ൯ = ∫ 	∫ఏ	ܭ	(ݏ)ܦ	߮൫ߠ൯		ݕ(௦)
ఏరିଵ			ஶ

௎(ೞ)(௫)
 

                                  × ߰൫ߠ, ,ߠ߶൫	൯ݔ ൯(௥)ݔ	 ቂ1 +
ఏఱ
ఏమ
(௦)ݕ	
ఏభ	ቃ

ିఏయ
 

                  	× ൥߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
			௬(ೞ)

(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௦ିଵ

 

        ×	൥1 − 	߮൫ߠ൯∑ අ
	(ିଵ)೗		ቀഇయశ೗	షభ೗ ቁ

	
ቀഇఱഇమ

ቁ
೗
			௬(ೞ)

(ഇరశഇభ೗)	

		(ఏరାఏభ௟)
ඉஶ

௟ୀ଴ ൩

௠ି௦

		 

            ×	൤∏ 	൬ ଵ
஻൫ఈೕ,ఉೕ൯

௝ߠ	
ఈೕିଵ൫1 + ௝൯ߠ

ି(ఈೕାఉೕ)൰	ହ
௝ୀଵ ൨   (௦)ݕ݀

                            = ఛ
ଶ
,                                                      (41) 

                                                                            

where	߮൫ߠ൯	is	given	by	(3), ߰൫ߠ, ,ߠ߶൫		and	൯ݔ  ൯ are(௥)ݔ	
given by (9),  ିܭଵ is given by (13) and (ݏ)ܦ is given by 
(21). 
 
4. Simulation Study 

This section aims to illustrate the performance of the 
presented Bayes estimates on the basis of generated data 
from the GBurr(ߠ)  distribution. Bayes averages of the 
parameters, rf and hrf based on Type II censoring are 
computed. Moreover, credible intervals of the parameters, 
rf and hrf are calculated. Bayes predictors (point and 
interval) for a future observation from the GBurr(ߠ)  
distribution based on Type II censored data are computed 
for the two-sample case. All simulation studies are 
performed using R programming language. 

Tables 1 and 2 show the Bayes averages of the parameters, 
their estimated risks (ERs), relative errors (REs) and 
credible intervals, where N=10000 is the number of 
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repetitions, (n = 30, 60, 100), are the sample sizes, in the 
complete sample case. For each sample size, the censoring 
size is 80% and (ߙ௝ = 2, 2, 4, 2, 3, ௝ߚ	 = 3, 2, 1, 5, 2) are the 
values of the hyper parameters. Also Tables 3 and 4 present 
the Bayes averages, ERs and credible intervals of rf and hrf 
for different values of the time	ݔ଴.  
Table 7 displays the Bayes predictive estimates and bounds 
for the future observations based on Type II censoring 
using two-sample prediction technique. 
 
5. Some Applications 

The main aim of this section is to demonstrate how the 
proposed methods can be used in practice. Two real 
lifetime data sets are used for this purpose. To check the 
validity of the fitted models, the Kolmogorov–Smirnov 
goodness of fit test is performed through using R 
programming language. 

Application 1:  
The first application is given by Murthy et al. (2004). 

The data refers to the time between failures for a repairable 
item: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 
0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 
1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86 and 
1.17. 
 
Application 2:  

The second application is the vinyl chloride data 
obtained from clean up gradient monitoring wells in mg/L; 
this data set was used by Bhaumik et al. (2009). The data 
are: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 
0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 
0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4 and 0.2. 

The Kolmogorov–Smirnov goodness of fit test is applied to 
check the validity of the fitted model. The p values are 
given, respectively, 0.1344 and 0.1056. 
 
Tables 5 and 6 present the Bayes averages of the 
parameters, ERs, REs and credible intervals for the real 
data based on Type II censoring.  
Table 8 displays the Bayes predictive estimates and bounds 
for the future observations based on Type II censoring and 
two-sample prediction technique.  
 
Concluding Remarks 
 

1. It is noticed, from Tables 1-6, that the ERs and REs 
for the estimates of the parameters, rf, hrf and the 
credible interval lengths of the parameters, rf and hrf 
under LINEX loss function have less values than the 
corresponding ERs, REs and the credible interval 
lengths under the SEL function. 

2. It is observed, from Table 4 that the estimated value 
of the rf decreases when the time ݔ଴ increases. While 
the estimated value of the hrf increases when the 
time ݔ଴ increases.  
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3. The length of the first future order statistic is smaller 
than the length of the last future order statistic. 
[Tables 7 and 8]. 

4. It is observed that less ERs and REs are obtained for 
complete sample sizes than the corresponding results 
for censored samples. Also, results perform better 
when n gets larger. 

 
General Conclusion 
 

In this study, Bayes estimators for the parameters, rf 
and hrf of the GBurr(ߠ) distribution, based on Type II 
censoring, are obtained. Bayesian prediction for a new 
observation from the GBurr(ߠ) distribution, based on Type 
II censoring, are derived. The Bayesian estimation is 
derived under two types of loss functions. Monte Carlo 
simulation is used to construct the comparisons between 
the results for different cases. Moreover, the results are 
applied on real data sets. 
 

In most cases, The Bayes averages of the parameters, 
rf and hrf based on Type II censoring under LINEX loss 
function have the smallest ERs, REs and the credible 
interval lengths than the corresponding ERs, REs and the 
credible interval lengths under the SEL function. Bayesian 
estimation under different type of loss function such as 
general entropy and precautionary loss functions for 
estimating the parameters of the GBurr(ߠ) distribution 
would be useful as a basis for further researches.  
 
References 
 
Ahmad, A. A., El-Adll, M. E.  and ALOafi, T. A. (2015). 
Estimation under Burr Type X distribution based on doubly 
Type II censored sample of dual generalized order 
statistics. Journal of the Egyptian Mathematical Society, 
Vol. 23, No. 2, pp. 391–396. 
doi.org/10.1016/j.joems.2014.03.011 

Aitchison, J. and Dunsmore, I. R. (1975). Statistical 
Prediction Analysis. Cambridge University Press, 
Cambridge, UK. doi.org/10.1017/CBO9780511569647 

AL-Hussaini, E. K. (2010). Inference based on censored 
samples from exponentiated populations. Test, Vol. 19, pp. 
487-513.  doi 10.1007/s11749-010-0183-5 
 
AL-Hussaini, E. K. and Hussein, M. (2011). Bayes 
prediction of future observables from exponentiated 
populations with fixed and random sample size. Open 
Journal of Statistics, Vol. 1, No. 1, pp. 24-32. 
 
AL-Hussaini, E. K. and Ateya, S. F. (2012). Bayesian 
prediction under a class of multivariate distributions. 
Journal of Mathematical and Computational Science, Vol. 
2, No. 4, pp. 967-981. 
 
AL-Sayed, N. T. (2017). On generalized Burr 
distribution with five parameters. M. Sc. Thesis, AL-



  
  
  
  
  
  

– – 

 

- 39 - 
 

Azhar University, Faculty of Commerce, Girls’ Branch, 
Cairo, Egypt. 

Behariy, S. M., AL-Dayian, G. R. and EL-Helbawy, 
A. A. (2016). The Kumaraswamy Burr Type III 
distribution: properties and estimation. British Journal of 
Mathematics and Computer Science, Vol. 14, No. 2, 
pp.1-21. doi: 10.9734/BJMCS/2016/19958 

Bhaumik, D. K., Kapur, K. and Gibbons, R. D. (2009). 
Testing parameters of a gamma distribution for small 
samples. Technometrics, Vol. 51, No. 3, pp. 326-334. 
doi.org/10.1198/tech.2009.07038 

Cordeiro, G. M., Gomes, A. E.  and da-Silva, C. Q. 
(2014). Another extended Burr III model: some properties 
and applications. Journal of Statistical Computation and 
Simulation, Vol. 84, No. 12, pp. 2524–2544. 
doi.org/10.1080/00949655.2013.793343 

Cordeiro, G. M., Ortega, E. M. M., Hamedani, G. G. 
and Garcia, D. A. (2016). The McBurr XII and Log-
McBurr XII models with applications to lifetime data. 
International Journal of Statistics and Probability, Vol. 5, 
No. 1, pp. 1-18. doi.org/10.5539/ijsp.v5n1p1 
 
 Gomes, A. E., da-Silva, C.Q. and Cordeiro, G. M. 
(2015). Two extended Burr models: theory and practice. 
Communications in Statistics - Theory and Methods, Vol. 
44, No. 8, pp. 1706-1734. 
doi.org/10.1080/03610926.2012.762402  
 
Kibria, B. M. G. and Shakil, M. (2011). A new five-
parameter Burr system of distributions based on 
generalized Pearson differential equation. Conference: 
Joint Statistical Meetings, Section on Physical and 
Engineering Sciences, pp. 866-880. 
 
Kim, C., Song, S. and Kim, W. (2016). Statistical 
inference for Burr Type III distribution on dual generalized 
order statistics and real data analysis. Applied 
Mathematical Sciences, Vol. 10, No. 14, pp. 683 – 695. 
doi.org/10.12988/ams.2016.615 
 
Merovci, F., Khaleel, M. A., Ibrahim, N. A. and Shitan, 
M. (2016). The beta Burr Type X distribution properties 
with application. SpringerPlus, Vol. 5, No. 1, pp. 1-18.     
doi 10.1186/s40064-016-2271-9  

Murthy, D. N. P., Xie, M. and Jiang, R. (2004). Weibull 

Models. Wiley series in probability and statistics, John 

Wiley and Sons, Inc., New York.           

Para, B. A., Jabeen, S. and Jan, T. R. (2015). 
Generalization of Burr Type III distribution, International 
Journal of Modern Mathematical Sciences, Vol. 13, No. 3, 
pp. 322-329. 
    
Paranaiba, P. F., Ortega, E. M. M., Cordeiro, G. M. and 
Pescim, R. R. (2011). The beta Burr XII distribution with 
application to lifetime data. Computational Statistics and 



  
  
  
  
  
  

– – 

 

- 40 - 
 

Data Analysis,  Vol. 55, No. 2, pp. 1118-1136. 
doi.org/10.1016/j.csda.2010.09.009 
 
Paranaiba, P. F., Ortega, E. M. M., Cordeiro, G. M. and  
De Pascoa, M. A. R. (2012).The Kumaraswamy Burr XII 
distribution: theory and practice. Journal of Statistical  
Computation and Simulation, Vol. 83, No. 11, pp. 2117-
2143. doi.org/10.1080/00949655.2012.683003 
 
Pushkarna, N., Saran, J. and Tiwari, R. (2013). 
Recurrence relations for higher moments of order statistics 
from doubly truncated Burr distribution. Statistica, Vol. 73, 
No. 2, pp. 253-265.   doi: 10.6092/issn.1973-2201/4142 
 
Sancetta, A. (2012). Universality of Bayesian predictions. 
Bayesian Analysis, Vol. 7, No 1, pp. 1-36. 

Surles, J.G. and Padgett, W.J. (2005). Some properties of 
a scaled Burr Type X distribution. Journal of Statistical 
Planning and Inference, Vol. 128, pp. 271 – 280. 
doi:10.1016/j.jspi.2003.10.003  

Varian, H. R. (1975). A Bayesian approach to real estate 
assessment. In Studies in Bayesian Econometrics and 
Statistics in Honour of Leonard J. Savage, eds. Stephen E. 
Fienberg and Arnold Zellner, North Holland, Amsterdam. 
pp. 195-208. 
 

Zellner, A. (1986). Bayesian estimation and prediction 
using asymmetric loss functions. Journal of the American 
Statistical Association, Vol. 81, No. 394, pp. 446-451. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
  
  
  
  
  

– – 

 

- 41 - 
 

Table 1 

Bayes average, estimated risk, relative error and 95% 
credible interval of the parameters, under SEL function 

based on Type II censoring 

 (N=10000, ࣂ૚ = ૛, ૛ࣂ = ૙. ૝, ૜ࣂ = ૜,ࣂ૝ = ૝	 

૞ࣂ	܌ܖ܉ = ૙. ૛) 

 
n r ી Average ER RE Lower Upper Length 
 ଵ 2.0484 0.0032 0.0283 1.9873 2.0869 0.0996ߠ  
 ଶ 0.3604 0.0023 0.1198 0.3134 0.4020 0.0886ߠ 80% 
 ଷ 3.0447 0.0033 0.0191 2.9899 3.0999 0.1100ߠ 24 
 ସ 3.0678 0.0056 0.0187 3.0188 3.1081 0.0892ߠ  

 ହߠ  30
 

0.1752 0.0013 0.1803 0.1284 0.2141 0.0858 

 ଵ 1.9622 0.0016 0.0200 1.9160 1.9867 0.0707ߠ  
 ଶ 0.4304 0.0011 0.0829 0.3927 0.4466 0.0539ߠ 100% 
 ଷ 2.9572 0.0021 0.0153 2.9241 2.9934 0.0693ߠ 30 
 ସ 3.0702 0.0052 0.0180 3.0373 3.0943 0.0570ߠ  
 ହ 0.2328 0.0012 0.1732 0.1982 0.2486 0.0504ߠ  
 ଵ 1.9555 0.0023 0.0239 1.9248 1.9840 0.0593ߠ  
 ଶ 0.3791 0.0007 0.0661 0.3414 0.4029 0.0616ߠ 80% 
 ଷ 3.0509 0.0031 0.0185 2.9954 3.0729 0.0775ߠ 48 
 ସ 3.0171 0.0004 0.0050 2.9993 3.0363 0.0370ߠ  

 ହߠ  60
 

0.1702 0.0011 0.1658 0.1351 0.1976 0.0625 

 ଵ 1.9734 0.0010 0.0158 1.9467 1.9993 0.0526ߠ  
 ଶ 0.3840 0.0003 0.0433 0.3669 0.4012 0.0344ߠ 100% 
 ଷ 2.9857 0.0004 0.0066 2.9642 3.0086 0.0444ߠ 60 
 ସ 2.9885 0.0002 0.0035 2.9775 3.0003 0.0228ߠ  
 ହ 0.1747 0.0008 0.1414 0.1548 0.1979 0.0431ߠ  
 ଵ 2.0229 6.1504E-04 0.0122 1.9999 2.0351 0.0351ߠ  
 ଶ 0.4090 1.6634E-04 0.0326 0.3923 0.4257 0.0334ߠ 80% 
 ଷ 2.9895 2.9201E-04 0.0057 2.9607 3.0074 0.0467ߠ 80 
 ସ 2.9846 3.4948E-04 0.0048 2.9659 3.0012 0.0352ߠ  

 ହߠ  100
 

0.2200 6.1648E-04 0.1245 0.1975 0.2426 0.0450 

 ଵ 2.0013 3.9470E-05 0.0032 1.9878 2.0102 0.0224ߠ  
 ଶ 0.4046 3.9282E-05 0.0158 0.3966 0.4105 0.0139ߠ 100% 
 ଷ 3.0081 8.5933E-05 0.0030 3.0003 3.0140 0.0137ߠ 100   
 ସ 3.0103 1.3007E-04 0.0028 2.9993 3.0166 0.0172ߠ  
 ହ 0.2053 3.5408E-05 0.0274 0.1987 0.2085 0.0098ߠ  
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Table 2  

Bayes average, estimated risk, relative error and 95% 
credible interval of the parameters, under LINEX loss 

function based on Type II censoring 

(N=10000, ࣂ૚ = ૛,ࣂ૛ = ૙. ૝, ૜ࣂ = ૜, ૝ࣂ = ૝	 
૞ࣂ	܌ܖ܉ = ૙. ૛) 

 
n r ી Average ER RE Lower Upper Length 
 ଵ 1.9521 0.0028 0.0264  1.9198 1.9887 0.0689ߠ  
 ଶ 0.3782 0.0006 0.0612 0.3427 0.3963 0.0535ߠ 80% 
 ଷ 2.9663 0.0015 0.0129  2.9342 2.9990 0.0648ߠ 24 
 ସ 3.9815 0.0004 0.0050 3.9624 3.9995 0.0371ߠ  

 ହߠ  30
 

0.1697 0.0010 0.1581 0.1514 0.1959 0.0444 

 ଵ 1.9838 0.0005 0.0112 1.9434 2.0052 0.0618ߠ  
 ଶ 0.4146 0.0004 0.0500 0.3831 0.4342 0.0511ߠ 100% 
 ଷ 3.0134 0.0003 0.0057 2.9878 3.0304 0.0426ߠ 30 
 ସ 4.0068 0.0001 0.0025 3.9887 4.0220 0.0334ߠ  
 ହ 0.2227 0.0006 0.1225 0.2009 0.2340 0.0331ߠ  
 ଵ 2.0172 4.6509E-04 0.0107 1.9911 2.0365 0.0454ߠ  
 ଶ 0.3939 9.6072E-05 0.0245 0.3804 0.4019 0.0215ߠ 80% 
 ଷ 2.9787 5.4340E-04 0.0077 2.9623 2.9965 0.0342ߠ 48 
 ସ 4.0129 2.1923E-04 0.0037 3.9970 4.0232 0.0261ߠ  

 ହߠ  60
 

0.2180 3.7242E-04 0.0964 0.1991 0.2274 0.0282 

 ଵ 2.0155 3.6711E-04 0.0096 1.9924 2.0336 0.0411ߠ  
 ଶ 0.4077 6.9229E-05 0.0207 0.3991 0.4128 0.0137ߠ 100% 
 ଷ 3.0079 8.1130E-05 0.0030 2.9986 3.0140 0.0155ߠ 60 
 ସ 3.9947 7.2130E-05 0.0021 3.9805 4.0054 0.0249ߠ  
 ହ 0.2049 7.9152E-05 0.0444 0.1916 0.2149 0.0233ߠ  
 ଵ 1.9884 1.4764E-04 0.0061 1.9829 1.9968 0.0139ߠ  
 ଶ 0.3947 4.7416E-05 0.0177 0.3843 0.4002 0.0159ߠ 80% 
 ଷ 3.0089 9.8012E-05 0.0033 2.9991 3.0155 0.0163ߠ 80 
 ସ 3.9941 7.8103E-05 0.0022 3.9831 4.0026 0.0195ߠ  

 ହߠ  100
 

0.1900 1.2265E-04 0.0500 0.1818 0.2001 0.0183 

 ଵ 1.9957 2.3109E-05 0.0022 1.9914 1.9991 0.0077ߠ  
 ଶ 0.3964 1.5306E-05 0.0097 0.3926 0.3994 0.0067ߠ 100% 
 ଷ 2.9960 1.9949E-05 0.0015 2.9926 2.9996 0.0070ߠ 100   
 ସ 4.0021 1.0279E-05 0.0008 3.9974 4.0058 0.0084ߠ  
 ହ 0.1976 1.2588E-05 0.0173 0.1912 0.2010 0.0097ߠ  
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Table 3 

Bayes average, estimated risk and 95% credible 
interval of the reliability and hazard rate functions 

at	࢞૙ = ૙. ૚, based on Type II censoring 

n r Loss 
function 

rf and 
hrf 

ER Average Lower Upper Length 

  SEL ܴ(ݔ଴) 0.0538 0.7660 0.7223 0.7992 0.0768 
 80%  ℎ(ݔ଴) 0.2862 0.6057 0.5645 0.6436 0.0791 
 24  

LINEX 
 

 (଴ݔ)ܴ
 

0.0428 
 

0.7903 
 

0.7761 
 

0.8002 
 

0.0241 
30   

 
 

ℎ(ݔ଴) 0.2657 0.5864 0.5578 0.6087 0.0508 

  SEL ܴ(ݔ଴) 0.0444 0.7870 0.7473 0.8118 0.0645 
 100%  ℎ(ݔ଴) 0.2543 0.5751 0.5296 0.6006 0.0710 
 30  

LINEX 
 

 (଴ݔ)ܴ
 

0.0369 
 

0.8049 
 

0.7955 
 

0.8118 
 

0.0163 
   ℎ(ݔ଴) 0.2515 0.5726 0.5475 0.5982 0.0507 
  SEL ܴ(ݔ଴) 0.0524 0.7687 0.7357 0.7994 0.0637 
 80%  ℎ(ݔ଴) 0.2849 0.6048 0.5774 0.6189 0.0415 
 48  

LINEX 
 

 (଴ݔ)ܴ
 

0.0404 
 

0.7959 
 

0.7902 
 

0.8007 
 

0.0105 
60  

 
 

 ℎ(ݔ଴) 0.2642 0.5853 0.5799 0.5911 0.0113 

  SEL ܴ(ݔ଴) 0.0364 0.8064 0.7898 0.8230 0.0332 
 100%  ℎ(ݔ଴) 0.2322 0.5531 0.5358 0.5662 0.0304 
 60  

LINEX 
 

 (଴ݔ)ܴ
 

0.0342 
 

0.8121 
 

0.8086 
 

0.8141 
 

0.0055 
   ℎ(ݔ଴) 0.2398 0.5609 0.5571 0.5641 0.0070 
  SEL ܴ(ݔ଴) 0.0411 0.7944 0.7840 0.8069 0.0229 
 80%  ℎ(ݔ଴) 0.2786 0.5991 0.5936 0.6034 0.0098 
 80  

LINEX 
 

 (଴ݔ)ܴ
 

0.0343 
 

0.8118 
 

0.8068 
 

0.8164 
 

0.0096 
100   

 
 

ℎ(ݔ଴) 0.2612 0.5823 0.5779 0.5849 0.0070 

  SEL ܴ(ݔ଴) 0.0354 0.8089 0.8045 0.8118 0.0072 
 100%  ℎ(ݔ଴) 0.2307 0.5515 0.5461 0.5553 0.0092 
 100  

LINEX 
 

 (଴ݔ)ܴ
 

0.0342 
 

0.8122 
 

0.8096 
 

0.8141 
 

0.0045 
   ℎ(ݔ଴) 0.2201 0.5404 0.5367 0.5423 0.0056 
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Table 4 

Bayes average of the reliability and hazard rate 
functions at different time ࢞૙, based on Type II 

censoring  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n r ࢞૙              
SEL 

                 
LINEX 

 

	(૙࢞)෡ࡾ 	(૙࢞)෡ࡾ (૙࢞)෡ࢎ  (૙࢞)෡ࢎ
 80% 

24 
0.1 
0.3 

 

0.7660 
0.7479 

0.6057 
0.6188 

0.7903 
0.7801 

0.5864 
0.5889 

30 
 

100% 
30 

0.1 
0.3 

0.7870 
0.7774 

0.5751 
0.5924 

0.8049 
0.7906 

0.5726 
0.5889 

 80% 0.1 0.7687 0.6048 0.7959 0.5853 
60 48 0.3 

  
0.7610 0.6230 0.7885 0.6000 

 100% 0.1 0.8064 0.5531 0.8121 0.5609 
 60 0.3 0.8058 0.5629 0.8076 0.5733 
 80% 0.1 0.7944 0.5991 0.8118 0.5823 

100 80 0.3 
 

0.7849 0.5999 0.8113 0.5878 

 100% 0.1 0.8089 0.5515 0.8122 0.5404 
 100 0.3 0.7862 0.5709 0.8019 0.5626 
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Table ٥ 

Bayes average, estimated risk, relative error and 95% 
credible interval of the parameters, under SEL function 

for the real data sets based on Type II censoring 

 n r ી Average ER RE Lower Upper Length 
 ଵ 2.9745 0.0007 0.0088 2.9495 2.9931 0.0436ߠ   
 ଶ 0.0626 0.0025 0.5000 0 0.1013 0.1250ߠ 80%  
 ଷ 3.0202 0.0012 0.0115 2.9730 3.0701 0.0971ߠ 24  

 ସ 2.9804 0.0008 0.0071 2.9233 3.0160 0.0927ߠ   
Application 

I 

 ହߠ  30
 

0.4942 0.0007 0.0529 0.4418 0.5327 0.0909 

 ଵ 3.0013 8.6655E-05 0.0032 2.9808 3.0149 0.0340ߠ   
 ଶ 0.1111 1.7102E-04 0.1414 0.0929 0.1203 0.0274ߠ 100%  
 ଷ 2.9877 2.6013E-04 0.0058 2.9679 3.0057 0.0378ߠ 30  
 ସ 3.0197 5.0967E-04 0.0056 2.9947 3.0339 0.0392ߠ   
 ହ 0.5036 7.2331E-05 0.0167 0.4836 0.5156 0.0321ߠ   
 ଵ 4.0568 0.0031 0.0136 3.9841 4.1022 0.1181ߠ   
 ଶ 0.0824 0.0007 0.2646 0.0439 0.1169 0.0730ߠ 80%  
 ଷ 3.2185 0.0008 0.0088 3.1858 3.2593 0.0735ߠ 27  
 ସ 2.9837 0.0469 0.0433 2.9545 3.0054 0.0509ߠ   

Application 

II 

 ହߠ  34
 

0.6333 0.0016 0.0667 0.5885 0.6691 0.0806 

 ଵ 4.1075 0.0002 0.0034 4.0809 4.1235 0.0426ߠ   
 ଶ 0.1131 0.0004 0.2000 0.0811 0.1334 0.0523ߠ 100%  
 ଷ 3.1896 0.0004 0.0062 3.1557 3.2233 0.0675ߠ 34  
 ସ 2.9997 0.0403 0.0401 2.9752 3.0199 0.0446ߠ   
 ହ 0.5945 0.0001 0.0167 0.5725 0.6098 0.0372ߠ   
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Table 6 

Bayes average, estimated risk, relative error and 95% 
credible interval of the parameters, under LINEX loss 

function for the real data sets based on                                     
Type II censoring 

 n r ી Average ER RE Lower Upper Length 
 ଵ 3.0036 0.0003 0.0058 2.9797 3.0309 0.0513ߠ   
 ଶ 0.1115 0.0002 0.1414 0.0923 0.1228 0.0305ߠ 80%  
 ଷ 2.9935 0.0001 0.0033 2.9636 3.0071 0.0435ߠ 24  

 ସ 3.9768 0.0007 0.0066 3.9507 4.0010 0.0503ߠ   
Application 

I 

 ହߠ  30
 

0.5165 0.0004 0.0400 0.4969 0.5327 0.0358 

 ଵ 3.0014 1.3260E-05 0.0010 2.9942 3.0068 0.0126ߠ   
 ଶ 0.1065 5.0387E-05 0.0707 0.0996 0.1110 0.0114ߠ 100%  
 ଷ 2.9987 7.3098E-06 0.0009 2.9926 3.0032 0.0105ߠ 30  
 ସ 4.0035 1.7995E-05 0.0011 3.9973 4.0067 0.0094ߠ   
 ହ 0.4954 2.7663E-05 0.0109 0.4889 0.4990 0.0101ߠ   
 ଵ 4.0820 5.0324E-04 0.0054 4.0558 4.1050 0.0492ߠ   
 ଶ 0.0950 9.3918E-05 0.0949 0.0782 0.1085 0.0303ߠ 80%  
 ଷ 3.2151 3.0950E-04 0.0054 3.1931 3.2283 0.0352ߠ 27  
 ସ 4.9918 2.0032E-04 0.0028 4.9700 5.0097 0.0397ߠ   

Application 

II 

 ହߠ  34
 

0.6111 3.6899E-04 0.0333 0.5762 0.6323 0.0561 

 ଵ 4.1089 9.910Ee-05 0.0024 4.0994 4.1167 0.0173ߠ   
 ଶ 0.1081 8.7768E-05 0.0948 0.0968 0.1154 0.0186ߠ 100%  
 ଷ 3.2015 6.0722E-05 0.0024 3.1844 3.2149 0.0305ߠ 34  
 ସ 5.0019 3.1109E-05 0.0011 4.9906 5.0118 0.0212ߠ   
 ହ 0.6012 3.8731E-05 0.0105 0.5890 0.6155 0.0265ߠ   

 

Table 7 

Bayes predictive and bounds of the future observation 

based on Type II censoring under two-sample 

prediction 

 (N=10000,	࢔ = ૚૙૙, ࢘ = ૡ૙,࢓ = ૛૚, ૚ࣂ = ૛,		 

૛ࣂ = ૙. ૝, ૜ࣂ = ૜, ૝ࣂ = ૝	܌ܖ܉	ࣂ૞ = ૙. ૛) 

 SE LINEX (v = -.5) ࢙

 ො(௦)(ైొ౔) LL UL Lengthݕ ො(௦)(ௌா) LL UL Lengthݕ 

1 0.3009 0.2995 0.3024 0.0029 0.3001 0.2993 0.3008 0.0014 

11 0.5010 0.4985 0.5037 0.0053 0.5008 0.4997 0.5029 0.0032 

21 0.7037 0.6990 0.7061 0.0071 0.6971 0.6927 0.6992 0.0064 
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Table 8 

Bayes predictive and bounds of the future observation 

for real data based on Type II censoring under 

 two-sample prediction 

૚ܕ) = ૛૞	܌ܖ܉		ܕ૛ = ૜૞) 

Real data ࢙ SE LINEX (v = -.5) 

ො(௦)(ైొ౔)ݕ ො(௦)(ௌா) LL UL Lengthݕ   LL UL Length 

 1 0.1210 0.1199 0.1224 0.0025 0.1204 0.1195 0.1209 0.0014 

Application I 13 1.1779 1.1732 1.1803 0.0070 1.1785 1.1759 1.1801 0.0041 

 25 2.5015 2.4967 2.5050 0.0083 2.4996 2.4948 2.5027 0.0079 

 1 0.0984 0.0964 0.0997 0.0033 0.0990 0.0982 0.0999 0.0016 

Application II 18 1.4991 1.4962 1.5024 0.0063 1.5020 1.4997 1.5032 0.0035 

 35 8.0023 7.9975 8.0050 0.0075 8.0023 7.9977 8.0046 0.0069 
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1. Introduction: 

In general, products which are sold in domestic markets face fewer obstacles and 

barriers than the products for export markets. Success in exporting is more difficult 

than selling to the domestic market as result of the differences in culture, income 

level, transportation and sever competition. The ability to sell goods abroad no 

longer depends solely on quality, delivery and price; a significant factor of growing 

importance is the ability and willingness to grant credit. 

The most important problems of Egyptian exports are insurance on export goods 

against commercial and non-commercial risks, fund shortage for exports and high 

cost of export financing. 

Default risk insurance is the most essential factors to encourage exports. So, Egypt 

issued new law (no.21) in 1992 to implement Export Credit Guarantee Company of 

Egypt (ECGE) that aimed to promote and development Egyptian exports for 

industrial, commercial and agricultural sector through export guarantee processes 

against commercial and non-commercial risks with Export Development Bank of 

Egypt assistance. They insure Egyptian export against nonpayment due to 

commercial risks (buyer default and Bankruptcy) and political risks (country 

default and non-transfer). ECGE has established relations with networks of debt 

collectors and bank representatives to monitor and recover overdue accounts 

giving exporters new levels of efficiency and control with overseas buyers through 

avoiding losses caused by non-payment (Thuraya, 2017). 
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Export financing is a huge driver for economic development and helps maintain 

the flow of credit to exporters. In this environment of relatively low liquidity, the 

cost of financing has increased and suppliers especially small and medium 

enterprises (SMEs) are finding it more difficult to obtain the credit they need. The 

scarcity of cheap external financing has driven many firms to look across their 

financial supply chain1 for opportunities to improve the management of working 

capital, optimize their cash flows and unlock trapped cash (Lekkakos, 2016.368). 

 

The researcher has interests on export financing for Small and Medium Enterprises 

(SMEs) for two reasons: 

 A challenge for many small business is access to financing. In particular, 

many firms find it difficult to finance their production cycle, since after 

goods are delivered. Most buyers demand 30 to 90 days to pay. For this 

duration, sellers issue an invoice and record as an account receivable, which 

is an illiquid asset until payment is received.  

 Exports have to be increased to play its role in the realization of the 

development plan. Since this cannot be realized by the traditional exports 

(timber, gold and other minerals) due to sectoral and market constraints.  

Export diversification, with a focus on the non-traditional sector, is seen as 

innovative strategy for export growth. 

                                                             
1 Supply chain is a linkage of operations that provide goods and services from the supplier of raw material to the 
end customer. 
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Exports also face difficulties in obtaining great amount of export financing mostly 

due to the risk of export transactions. Even when export risk have been assessed 

and payment terms properly arranged, there are still exceptional problems which 

can significantly delay payment and sometime cause insolvency, there are: 

shipping delays, a change in economic circumstances by the time the goods arrive, 

bills of exchange2 not accepted, deliberate default of funds by banks, shortage of 

hard currency at the central bank, actual of near insolvency of the buyer (Al-Araj, 

2003, pp 92-93). 

Trade financing is not just about funding export transaction. It is also about 

limiting the risks of such transaction. Most banks need to be assured about the 

ability of borrowers to repay a loan before agreeing to finance export transactions. 

Banks thus insist on adequate collateral. Insurance policies and guarantees granted 

by export credit agencies can be used as collateral for trade financing. Since banks 

are often willing to grant exporters favorable credit conditions once the perceived 

risk of default has been reduced. 

2. Export Credit Agencies: 

Most firms involved in inter-firm trade offer credit to their customers, where trade 

credit is defined as allowing customers to obtain goods or services and pay at a 

later date. Trade credit is an important source of short-term finance for business 

and represents a substantial component of both corporate liabilities and assets 

(Summers, 2000, 37). 
                                                             
2 Document signed by the person authorizing, which tells another to pay money unconditionally to a named person 
on a certain date. 
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Export Credit Agencies (ECA) play a role in international trade and investment 

flows. ECA is a vital part of the infrastructure supporting trade and was often 

considered to be a critical component in a nation’s export-led growth strategy. The 

following consideration are strong reasons for establishing an ECA: (i) protection 

against risks, (ii) access to bank financing, (iii) access to information, (iv) an 

instrument of government policy and international Co-operation. 

The classic way of laying off any risk is to take insurance, and international credit 

risks are no exception. The main general principles of export credit insurance may 

be summarized as follows: 

a. Both insured and insurer must share the risk. Therefore credit insurance 

policies usually cover between 75 and 95 percent of the loss according to the type 

of policy. 

b. Cover is restricted to agree debts and disputes must be resolved before a 

claim under the policy can be paid. 

c. The terms of payment must be appropriate to the goods or services 

concerned. 

d. Credit insurance does not guarantee payment at due and is not a financial 

guarantee. 

In order to meet the World Trade Organization (WTO) requirement, it is clear that, 

on the long run, premiums should match the risks. Although the above mentioned 

coverage ratios are still in the same range, the risk sharing in general between 
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ECAs and the private market can be developed further, in order to create more 

capacity for exporters (Al-Araj, 2003, p.25-26). 

Credit risk is pervasive throughout financial markets. Traditionally, various 

financial institutions have assumed the burden of credit risk. Banks bear the credit 

risk attached to bank loans. Credit insurance companies have provided coverage 

for commercial credit risk faced by suppliers of consumer and investment goods 

and services. Public insurers, such as the ECGD in the UK have specialized in the 

coverage of credit risk attached to export trade and overseas investment. 

Specialized institutions, such as factoring companies, have offered credit risk 

coverage as one component in a basket of financial service. More recently, the 

increase of financial contract that involve counter-party default risk such as swaps, 

back-to-back loans and derivative products have focused attention on ways to deal 

with credit risk in the marketplace. Products such as credit default swaps, credit 

spread options and total rate of return swaps have allowed firms and financial 

institutions to more effectively deal with credit risks (Loubergé, 2005, pp 118-

119). Given good management, access to credit will accelerate the adoption of 

more efficient and effective techniques of production and marketing by exporters 

(Buatsi,2002,504). 

Export financing is often a key factor in a successful sale. Contract negotiation is 

important, but at the end of the day, a company must get paid. Exporters naturally 

want to get paid as possible, while importers usually prefer to delay payment until 

they have received or resold the goods. Because of the intense competition for 

export markets, being able to offer attractive payment terms customary in the trade 
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is often necessary to make a sale. Hence, exporters should be aware of various 

financing options open to them so that they choose the most acceptable one to both 

the buyer and the seller in order to reduce cost and minimize interest rate (Al-Araj, 

2003, p.19). 

3. Export financing 

The financial needs of exporters may be linked to two distinct phases of the export 

process; the pre-shipment phase and post-shipment process (Buatsi, 2002, 503-

504). 

 Pre-shipment finance relates to funds needed by an exporter to 

produce or buy goods for export. It is the finance to provide the 

working capital between the time of receipt of an export order and the 

time of shipment. The need for external financing by firms may begin 

at the pre-shipment stage, when funding for the purchase of inputs 

(whether these be raw materials or capital equipment and spares), 

processing and other operations. Exporters require funding for a wide 

range of inputs and activities to purchase and/or produce goods, tools 

and machinery, processing, packaging, marketing. This type of 

finance is particularly important for small firms that have limited 

access to long-term capital markets and therefore, need to rely on 

trade credit and short-term loans. The funding of working capital will 

ensure continuous operations of their export business. Exporters could 
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obtain finance at the pre-shipment stage through anticipatory letter of 

credit and banking credits that include short-term loans. 

 Post-shipment finance is needed to bridge the gap between the time of 

shipment and receipt of export proceeds. Exporters usually have to 

wait for some time (float time) before payment is received from 

overseas buyers. The period of waiting depends on the terms of 

payments, so, the need for post-shipment finance to strengthen the 

financial position of the exporters varies accordingly. Based on 

different terms of payments, banks have devised various methods of 

financing through negotiations of bills of exchange. The firm’s ability 

to complete effectively and to win contracts depends on their capacity 

to offer attractive credit terms to foreign buyers. The longer the credit 

term extended to foreign buyers, the bigger the strain on the exporters’ 

liquidity and the more important their access to adequate external 

trade financing during the post-shipment stage. Exports should be 

aware of two factors that have to be considered in making decisions 

about export financing; first is need for financing to make the export 

process in favorable and competitive payment terms. Second, should 

be a consideration for the life of product financed since exporters wait 

long time before receiving payments (Al-Araj, 2003, p.25). 

A sound financial system providing adequate credit and insurance facilities is 

therefore essential for exporters in developing and transition economics (Buatsi, 

2002, 504). Banks, in export financing use the same principles of good lending to 
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extend export credit facilities, they also have to make it clear on how the bank 

would expect repayment in due course of time. Many lending decisions are based 

on experience that comes from learning and applying principles of good lending. 

Normally, banks follow the well-known mnemonic CAMPARI, which stands for: 

character of the customer, ability to borrow and repay, margin of profit, purpose of 

the loan, amount of the loan, repayment terms and insurance against the possibility 

of non- payment (Al-Araj, 2003, p.22-23). 

Solid financial base for an exporter is a necessary ingredient for expansion in 

activities and growth of the earnings. Without finance or credit, non-traditional 

exporters have little chance of increasing production.  

Export financing is the provision of credit and any form of financial assistance to 

meet the needs of an exporter in carrying out an export order. Basically, there are 

four methods of financing an export shipment. The methods to adopt include 

(Buatsi, 2002, 503), (Al-Araj, 2003, p.19-20): 

 Cash –in-advance 

 Open account 

 Documentary bills of exchange 

 Commercial letters of credit 

Cash-in-advance is unlikely to happen and in which case there would be no credit 

to manage.  

Open account is the riskiest method of settlement since goods are shipped in 

advance of payment.  The buyer is under no pressure to pay other than through fear 
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of losing the seller’s goodwill or eventually of some form of legal action (Al-Araj, 

2003, p.19). Completing a transaction with international buyers carries a certain 

amount of payment uncertainty or delay which can be lowered with domestic 

buyer, thus international trade contains some degree of credit risk, exposing the 

exporters to danger. In particular, exporters may be unware or lack the information 

of the buyer’s financial situation. There is also the difficulty of trying to collect an 

overdue account from an international buyer (Han, 2016, p.105-106). With the 

increase of traders in international transactions and familiarization with their 

trading partner’s situation, the need for risk hedging is decreasing. The change in 

behavior reflect the growing importance of open account transactions, whereas the 

exporter delivers goods and the importer pays on reception or under agreed 

payment condition. Open account take about 80 percent of trade transactions by 

volume (Han, 2016, 0.106).  

A documentary bills of exchange essentially involves the use of a third party, 

almost invariably a collecting bank, to act as an intermediary, and a fee to 

exchange documents of sale for payment or a promise to pay.  

Commercial letters of credit is an old method of settlement likely to become 

outdated as the world modernized and international trade moved towards better 

technologies. For the best possible security, the right form of credit must be used 

and the documentation presented against it must be 100 percent accurate and 

delivered on time.  

4. Factoring: 
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Other types of supply chain financing have been developed such as factoring that 

involves a process where a specialized firm takes the responsibility of collection 

and administration of account receivables to its customers. It can be considered as 

a short-term funding based on the sale of account receivables on the basis of an 

interest rate for service performed (Cela et al. 2013, pp112). Other defined it as a 

form of asset-based finance based on the value of the borrower’s accounts 

receivables which are sold at discount to the factor company and considered the 

primary source of repayment (Klapper, 2006). Briefly, factoring is a financing 

technique that refers to the sale of the firm’s accounts receivables to a financial 

institution known as a factor. The firm and the factor agree on the basic credit 

terms for each customer. The customer sends payment directly to the factor who 

bears the risk of default customers. The factor buys the receivables at a discount of 

the value of the invoice amount.  

Factoring is used in developed and developing countries around the world. In 

2004, total worldwide factoring volume was over US$ 860 billion, an impressive 

growth rate of 88% since 1998. However, the role of export factoring in both 

developed and developing countries is relatively small; less than 10% of factoring 

in developing countries is international versus about 20% in developed countries. 

One reasons is that exporters often rely on other products to facilitate foreign sales, 

such as foreign credit insurance and letters of credit (Klapper, 2006). 

Factoring contracts do not involve a credit relationship but rather the transaction 

contains a sale and a purchase (Vazquez, 2016, 4). Factoring would be a type of 

discounting without recourse, because it is the sale of export account receivables to 
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a third party which takes the credit risk while a factor may be a factoring house or 

a special department in a commercial bank. Under the export factoring 

arrangement, the seller passes its order to the factor for approval on the credit risk. 

Once the order has been approved, the exporter has complete protection against 

bad debts and political risk. The customer pays the factor which acts as the 

exporter’s credit and collection department. The period of settlement generally 

does not exceed 180 days (Al-Araj, 2003, p.23-24). Problems can arise when there 

are assignment limitations: for instance, some countries like South Korea do not 

permit assignment of claims (Han, 2016, p.106). Factoring provides to the supplier 

collection of 70 to 90 percent of the invoice amount within 24 or 48 hours once the 

factoring agreement is set. When factoring company receives the payment of 

business bills, to difference of 10 to 30 percent of the amount is deducted the 

commission of the factoring company which is 1,5 to 3 percent of the invoice 

amount per month and then the rest is paid to the business. Factoring will not fund 

bad loans to protect both parties, factor and the supplier (Cela et al. 2013, pp112). 

Organizations may choose to manage the integrate credit administration process 

‘in-house’ (vertically integrate), in contrast some or all of these activities can be 

‘out-sourced’ to specialized institutions that perform administration functions such 

as factors, invoice discounters, credit reference agencies, in particular a firm’s 

requirements for short term financing. Factoring relationships involve complex 

bilateral contracts between the firm and the factor (summers, 2000, pp38). We 

have to considered that involvement of a third party such as a factor, in credit 

management, could leave the firm with less flexibility in the way it sets and varies 
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credit terms between customers for price discrimination or other competitive 

reasons (summers, 2000, pp42).   

Factoring can be either on a “non-recourse” or “recourse” basis against the factor’s 

client (the sellers). In non-recourse factoring, the lender not only assume title to the 

accounts, but also assumes most of the default risk because the factor does not 

have recourse against the supplier if the accounts default. Factoring can also be 

done on either a notification or non- notification basis. Notification means that the 

buyers are notified that their accounts have been sold to a factor (Klapper, 2006). 

5. Benefits of factoring: 

 Factoring can be viewed as a bundle of activities. In addition to the 

financing component, factors typically provide two other complementary 

services to their clients; credit services and collection services. Credit 

services involve assessing the creditworthiness of the seller’s customers 

whose accounts the factor will purchase (Klapper, 2006). Use of factors can 

give rise to savings in information costs for the customers of firms which use 

the factoring service. The factors can be a source of information to potential 

buyers on the price, quality and other attributes of the firm’s goods in a sales 

situation. In any market with imperfect information there are costs to both 

buyer and seller in acquiring enough information to evaluate the likely 

risk/return ratio on a transaction. In some circumstances a factor may be able 

to obtain information on the credit worthiness of a buyer and to monitor 

buyer risk more cheaply than a supplier could, such circumstances might 

therefore be expected to increase the propensity of the supplier to use 
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factoring services (Summers, 2000, pp 39). In addition to allow SMEs to 

effectively outsource their credit and collection functions. These credit and 

collection services are often especially important for receivables from buyers 

located overseas. Export factoring can facilitate and reduce the risk of 

international sales by collecting foreign account receivables. The seller’s 

factor will typically contact a factor in the buyer’s home country who will do 

a credit check on the buyer. The approval of the factor arrangement send an 

important signal to the seller before entering a business relationship 

(Klapper, 2006). 

 There are two main differences between factoring and bank loan in favor of 

factoring: the first, factoring uses the account receivables which are assets 

not yet completed as collateral for financing. This is the benefit of the new 

companies which need working capital but have not enough assets to use as 

collateral for bank loans. The second difference lies in the assessment of 

credit risk, while banks are interested in credit analysis of the firm seeking 

credit (suppliers) and look to collateral only as a secondary source of 

payment. In the case of factoring, the seller’s viability and creditworthiness, 

though not irrelevant, are only of secondary underwriting importance (Cela 

et al. 2013, pp110). 

 It is well suited for financing receivables from high-risk seller whose 

receivables are obligation of buyers who are more creditworthy than the 

seller itself. The study of (Summers, 2000) provides more evidence that the 

smaller companies have a higher probability of using factoring because the 
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problems which small firms have in raising institutional finance and also 

study of (Cela et al. 2013) indicates that the factoring is a financing source 

more convenient for Albanian SMEs that need liquidity and working capital 

especially new enterprises, which have 1-5 years of operation in the market.  

 Financing through factoring is one of the tools that require less time and one 

of the easiest method for providing liquidity for a company that have a 

positive result in the income statement (Cela et al. 2013). 

 It is suitable for week business environment and weaker protection of 

creditor rights since the factored receivables are removed from the 

bankruptcy estate of the seller and become the property of the factor. A key 

legal issue is whether a financial system’s commercial law recognizes 

factoring as a sale and purchase. If it does, then creditor rights and 

enforcement of loan contracts diminish in importance for factoring because 

factors are not creditors. That is, if a firm becomes bankrupt, its factored 

receivables would not to be of the bankruptcy state because they are the 

property of the factor, not the property of the bankrupt firm. (Vazquez, 

2016), but (Klapper, 2006) finds week evidence that factoring is relatively 

larger in countries with weak contract enforcement. 

However, factoring may still be hampered by weak contract enforcement 

institutions other tax, legal and regulatory impediment. Weaker governance 

structure may also create additional barriers to the collection of receivables in 

developing countries. Tax treatment of factoring transaction often makes 

factoring prohibitively expensive. For example, some countries that allow 
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interest payment to banks to be tax deductible do not apply the same deduction 

to the interest on factoring arrangement. In addition, capital control may prevent 

non-banks from holding foreign currency accounts for cross-border 

assignments. Weak information infrastructure may also be problematic for 

factors. The general lack of data on payment performance, such as the kind of 

information that is collected by public or private credit bureaus or by factors 

themselves, can discourage factoring (Klapper, 2006). 

One solution to these barriers to factoring is “Reverse Factoring”. In this case, 

the lender purchases account receivables only from specific informationally 

transparent, high quality buyers. The factor only needs to collect credit 

information and calculate the credit risk for selected buyers, such as large, 

internationally accredited firms. The main advantage of reverse factoring is that 

the credit risk is equal to the default risk of the high-quality customer ant not 

the risky SME (Klapper, 2006). 

6. Literature review: 

It may be that firms are attracted to factoring for other reasons (such as unsatisfied 

demand for finance) but their ability to collect information on creditworthiness, 

and hence be an information source, makes them more attractive to the factor. It 

may be that these firms can negotiate a better deal with the factor based on the 

information they collect. He provides more evidence that the smaller companies 

have a higher probability of using factoring (Summers, 2000, 47). 
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(Summers, 2000) investigates the decision by a firm to externalize the majority of 

the credit management function and use factoring. Data of this study is from 655 

firms which responded to a mail survey in 1994. The study provides more evidence 

that the smaller companies have a higher probability of using factoring because the 

problems which small firms have in raising institutional finance. 

(Buatsi, 2002) study was undertaken on a sample of non-traditional exporting 

firms and selected banks in Ghana. Ghanaian exporters hardly obtain finance for 

export operations. SME exporters hardly meet the requirements of banks to access 

credit, interest rates are high and default on loans has been high. 

(Al-Araj, 2003) the purpose of this study is to develop a strategy for financing 

industrial exports by banks in Jordan. Sources of data are divided into primary and 

secondary; primary data was collected through a survey questionnaire distributed 

to 17 banks and 32 industrial exporting firms. Secondary data was collected from 

the annual and monthly reports of the central bank and export firm from 1986-2001 

in the regression equation. The results indicate that industrial exports do not have 

sufficient credit facilities to finance their exports. The bankers of Jordan should 

start to use the new instruments of export financing such as factoring, forfaiting 

and invoice discounting in addition to improving the export credit insurance 

schemes in order to solve the problem of unwillingness to lend against foreign 

receivables. 
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(Loubergé, 2005 et. al) develop a method for coping with credit risk by 

decomposing this risk into idiosyncratic and systematic components that may be 

treated separately and show how this decomposition redesign financial contracts. 

(Cela et al. 2013) examined factoring as the short term for SME in Albania. From 

statistical analysis and interviews with specialists of four factoring companies and 

110 enterprises use bank loan or factoring. The results indicates: 

 The factoring is a financing source more convenient for Albanian SMEs 

that need liquidity and working capital especially new enterprises, which 

have 1-5 years of operation in the market. 

 The first companies that started to operate in factoring market encounter 

difficulties which relates to lack of information of the suppliers to providing 

it to clients. 

(Vazquez, 2016) using a sample of 4348 firms from 25 European countries and 

analyzing whether the use of factoring by SMEs differs across countries due to 

differences in the legal protection of creditors. Results shows that the likelihood of 

using factoring increases with weaker protection of creditor rights and the size of 

factoring industry is larger in countries with greater economic development and 

higher rates of growth.  
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MEASURING THE EFFICIENCY OF INDUSTRIES BY FUZZY DATA 

ENVELOPMENT ANALYSIS 

Abstract— Manufacturing is a part of the income of any country, helping to grow the 

economy by generating productivity, stimulating research and development, and 

investing in the future. Therefore, this paper seeks to explain the productivity growth 

performance of Ethiopian's manufacturing sector using a dataset of 14 types of 

industries for the year of 2008; utilizing data envelopment analysis (DEA) techniques 

either traditional or fuzzy DEA models. Data envelopment analysis (DEA) is a 

methodology for measuring the relative efficiencies of a set of decision making units 

(DMUs) that use multiple inputs to produce multiple outputs. Conventional DEA 

models assume that input and output values should be certain (crisp data). However, 

the observed values of the input and output data in real-world situations are 

sometimes vague or imprecise. In this paper, three approaches that transform the 

original data (crisp data) into interval data, in the form of upper and lower frontier 

data, are suggested. Then, by using these upper and lower frontier data; the interval 

DEA efficiency scores can be achieved. These approaches are applied on the real-life 

data and the results show that data envelopment analysis (DEA) techniques are 

suitable to evaluate and compare the performances of industries that enable the 

decision makers to analyze the situation better. 

Keywords — Data envelopment analysis; Fuzzy; Interval data; Efficiency; Decision 

making units; Manufacturing industries.  

I. INTRODUCTION 

    The manufacturing sector is considered the backbone of development in general 

and economic development in particular.  Moreover, the economic strength of any 

country is measured by the development of manufacturing industries. Industries help 
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in eradicating unemployment and poverty, reducing the heavy dependence of people 

on agricultural income, bringing down regional disparities by establishing industries 

in tribal and backward areas an exporting of manufactured goods that expand trade 

and commerce and bring in much needed foreign exchange. Therefore, this paper 

seeks to explain the productivity growth performance of Ethiopian's manufacturing 

sector using a dataset of 14 types of industries for the year of 2008; utilizing data 

envelopment analysis (DEA) techniques either traditional or fuzzy DEA models.  

   Data envelopment analysis (DEA) is a non-parametric technique for evaluating and 

measuring the relative efficiency of decision making units (DMUs) characterized by 

multiple inputs and multiple outputs. DEA is a linear programming technique that 

computes a comparative ratio of weighted outputs to weighted inputs for each unit, 

which is reported as the relative efficiency score. The efficiency score is usually 

expressed as either a number between zero and one (0-1) or as a percentage (0-

100%). A decision-making unit with a score equal one becomes the efficient unit. On 

the other hand, a unit with a score less than one is deemed inefficient relative to other 

efficient units [1, 2]. The name of DEA was due to constructing an efficient frontier 

from efficient units by the model that this frontier will cover (envelope) the 

inefficient units [3]. DEA has initially been used to investigate the relative efficiency 

of non-for-profit organizations and it is quickly spread to profit-making 

organizations. DEA has been successfully applied in such diverse settings as schools, 

universities, hospitals, libraries, banks, shops, industries, and more recently, whole 

economic and society systems; in which outputs and inputs are always multiple [4, 5]. 

This paper is organized as follows: The next section contains literature review about 

using DEA in industry field. Section 3 presents a discussion about conventional 

models of DEA and some models of FDEA and development for these some FDEA 
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to express the data as interval data. In section 4, an application based on a real data is 

presented. Section 5 represents final results and conclusion. 

II. LITERATURE REVIEW 

   In this section we mention some of the studies that have been carried out to 

examine the technical efficiency using DEA models for various industries in different 

countries.  

      The study of Saricam, C. and Erdumlu, N. (2012) provided a framework for DEA 

application in determination and comparison of efficiency performance in an industry 

level. In this study, the performances of the companies in the textile, apparel and 

leather industry quoted by Istanbul Stock Exchange for the period 2003-2008 were 

analyzed by input-oriented model under variable returns to scale assumption. Net 

assets and the average number of employees were used as inputs, and gross value 

added, profit before tax and export revenues were used as the outputs. The input and 

output variables were selected by considering the fact that inputs and outputs should 

be independent in DEA in order to obtain reasonable results. The results showed that 

DEA is a suitable tool to make performance evaluation and to compare the 

performances of industries enabling the decision makers to better analyze the 

situation [6]. 

    Ahmadi, V. and Ahmadi, A. (2012) examined the technical efficiency level of 

manufacturing industries in Iran during 2005 to 2007 (The Fourth Development 

Program) by using two models, CCR and BCC, based on output orientated. Number 

of employees, capital formation (million rials), raw materials employed by 

manufacturing industries (million rials), fuel employed by manufacturing industries 

(million rials) are used as input variables. Whereas value added of manufacturing 

industries (million rials) is used as output variable. According to the results, it is 
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found that there are three principal manufacturing industries and two provinces which 

are identified as the best performers, namely tobacco, transport equipment and coal 

coke. Among thirty provinces, Bushehr and North Khorasan provinces have the best 

performance [7]. 

     The study of Kumar, S. and Arora, N. (2012) involved the realization of two 

principal objectives. The first objective is to analyze the inter-temporal and inter-state 

variations in the technical efficiency of Indian sugar industry using the longitudinal 

data for 12 states over the period of 31 years (i.e., from 1974/75 to 2004/05). This has 

been accomplished by using the method of full cumulative data envelopment analysis 

(FCDEA). Another principal objective of this study is to identify the determinants of 

technical efficiency in Indian sugar industry for which the panel data Tobit regression 

has been used.  The results suggest that the extent of technical inefficiency in Indian 

sugar industry is about 35.5 percent per annum, and the availability of skilled labor 

and profitability have been found to be most significant determinants of technical 

efficiency in Indian sugar industry [8]. 

    Chueh, H. and Jheng, J. (2012) used a two-stage input-oriented BBC model to 

analyze the operational efficiency and profitability of the Taiwanese solar power 

industry between 2010 and 2011. According to the results of this study, only Motech, 

in 2010, was simultaneously operationally and profitably efficient. As the solar cell 

market expands, various input and output factors may be considered. This study 

constructed a performance evaluation model by using data envelopment analysis for 

the solar cell industry to assist relevant manufacturers in the Taiwanese solar power 

industry in formulating operational strategies; guidelines on future development in 

the industry have been recommended [9]. 
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    Saraçli et al. (2013) examined the efficiencies of 64 marble factories in 

Afyonkarahisar city, the most famous city in terms of marble production in Turkey. 

In this study, data envelopment analysis (DEA) was used to determine the efficient 

and non-efficient factories. The study used 12 Input and 2 output variables to 

examine of efficiencies of the factories according to the model of production. The 

inputs include: number of factory workers, number of engineers employed at the 

factory, number of machines in the factory, number of marble quarries belonging to 

the factory, ratio of produced products sold on the internal market (%), ratio of 

produced products sold on the external market (%), monthly costs of laborer 

employed in the factory, monthly electricity costs of the factory, monthly water costs 

of the factory, monthly maintenance costs of the factory, monthly fuel costs of the 

factory, and average monthly socket costs of the factory. Whereas outputs are; 

monthly produced processed marble amount (m2) and number of produced product 

varieties. They give some recommendations to the administrators of the factories for 

upgrading their production levels by summarizing the deficiencies of the factories, 

related with the results of the study. They mentioned that, by following these 

recommendations, the efficiencies of the factories will increase, and with increased 

and efficient productions, the importance of Afyonkarahisar city will be the highest in 

Turkey [10]. 

   The study of Akgöbek, Ö. & Emre Yaku, E. (2014) aimed to examine the efficiency 

level of sectors operating in manufacturing industry in Turkey regarding the years 

between 1996-2008 via data envelopment analysis (DEA) and artificial neural 

network (ANN) to evaluate it from the financial aspect. This study is composed of 

two stages. Firstly, the efficiency of 14 sectors under manufacturing sector has been 

calculated by using DEA. Then, the efficiency scores of the sectors have been 

realized to be estimated by using the techniques of artificial neural networks. The 
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input and output variables to be selected for the efficiency measurement of the sectors 

should have the best representative quality in estimating the efficiency. Considering 

this matter, inputs include:  current ratio, total debt/equity capital, and tangible fixed 

assets / (long-term liabilities + equity capital) and the outputs are; stocks/current 

asset, net profit margin, active rate of return, and interest expense/net sales [11]. 

    Baran et al. (2016) compared the technical efficiency of 12 sectors manufacturing 

basic metals and metal products in Poland. This study presented the use of data 

envelopment analysis models, to determine overall technical efficiency, pure 

technical efficiency and scale efficiency of metallurgical branches in Poland. The 

average technical efficiency of metallurgical industry in Poland was quite high. The 

analysis gave a possibility to create a ranking of sectors. Three branches were found 

to be fully efficient: manufacture of basic iron and steel and of ferroalloys, 

manufacture of basic precious and other non - ferrous metals and manufacture of 

tubes, pipes, hollow profiles and related fittings, of steel. The results pointed out the 

reasons of the inefficiency and provide improving directions for the inefficient 

sectors [12]. 

III. METHODOLOGY 

A. Data Envelopment Analysis 

    Data envelopment analysis (DEA) is a mathematical programming approach 

developed in operations research and management science over the last decades for 

measuring the relative efficiency of a set of production systems, or decision making 

units (DMUs), with multiple inputs and multiple outputs. It originally was developed 

by Charnes, Cooper, and Rhodes (1978) under the assumption of constant returns to 

scale (CRS) and was extended by Banker, Charnes, and Cooper (1984) to include 

variable returns to scale (VRS) [13, 14]. 
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 The CCR Model 

    The DEA model originally proposed by Charnes, Cooper, and Rhodes [13] is 

called the CCR model (which is named after the first letters of their names). In this 

model, the efficiency of any DMU is obtained as the maximum of a ratio of weighted 

outputs to weighted inputs subject to the condition that; the similar ratios for every 

DMU be less than or equal to unity. They assumed that there are ݊ of ܯܦ ௌܷ to be 

evaluated, where every ܯܦ ௝ܷ 	(݆ = 1,2, …… , ݊) consumes varying amounts of ݉ 

different inputs	ݔ௜௝(݅ = 1,2, …… ,݉) to produce		ݏ different output	ݕ௥௝(ݎ =

1,2,…… , ݎ)௥	ݑ With decision variables outputs weights .(ݏ = 1,2,… ,  and inputs (ݏ

weights ݒ௜ 	(݅ = 1,2,… ,݉)		being selected, the mathematical formulation of the 

method is summarized as follows: 

										ݔܽ݉ ℎ଴ =
				∑ ௦	௥ݑ

௥ୀଵ 		௥଴ݕ
∑ ௠	௜ݒ
௜ୀଵ ௜଴ݔ

 

 

			:݋ݐ	ݐ݆ܾܿ݁ݑܵ
				∑ ௦	௥ݑ

௥ୀଵ ௥௝ݕ 		
∑ ௠	௜ݒ
௜ୀଵ ௜௝ݔ

≤ 1											; 																																݆ = 1,2,…… , ݊			

,௥ݑ																												 ௜ݒ ≥ 0														; ݎ						 = 1,2, …… , ;				ݏ 				݅ = 1,2,…… ,݉	                                   
(1) 

Hence, the fractional CCR model (1) evaluates the relative efficiencies of ݊ decision 

making units (DMUs), each of them with	݉ inputs and ݏ outputs by maximizing the 

ratio of	ℎ଴.  

 The BCC Model 

     Banker, Charnes, and Cooper 1984 [14] introduced the BCC model (which is 

named after the first letters of their names). This model is an extension of the CCR 



  

 

– – 

 
 

- 78 - 
 

model. The primary difference between the two models (CCR and BCC) is the 

treatment of returns to scale. CCR model assumes constant returns to scale (CRS) 

while BCC model assumes variable returns to scale (VRS). The BCC ratio model 

differs from the CCR ratio model (1), by an additional variable as follows:	

										ݔܽ݉ ℎ଴ =
				∑ ௦	௥ݑ

௥ୀଵ ௥଴ݕ −	ܿ଴	
∑ ௠	௜ݒ
௜ୀଵ ௜଴ݔ

 

			:݋ݐ	ݐ݆ܾܿ݁ݑܵ
				∑ ௦	௥ݑ

௥ୀଵ ௥௝ݕ −	ܿ଴			
∑ ௠	௜ݒ
௜ୀଵ ௜௝ݔ

≤ 1											; 																						݆ = 1,2,…… , ݊			

,௥ݑ																										   ௜ݒ ≥ 0								; ݎ								 = 1,2, …… , ;						ݏ 						݅ = 1,2, …… ,݉	 

																																	ܿ଴					݀݁ݐܿ݅ݎݐݏ݁ݎ݊ݑ	݊݅	݊݃݅ݏ                                                                                  

(2)                           

Where ܿ଴	 is the new variable that separates scale efficiency from technical efficiency 

in the CCR model [15, 1]. 

B. Fuzzy Data Envelopment Analysis 

     Classical DEA models assume that input and output values should be certain 

(crisp data). However, in real-world problems inputs and outputs are often imprecise 

and vague. To deal with imprecise or vague data, fuzzy set theory has become an 

effective method. Recently, Fuzzy set theory has been applied to a wide range of 

fields such as management science, decision theory, artificial intelligence, computer 

science, expert systems, logic, control theory and statistics [16]. Sengupta (1992) was 

the first to introduce a fuzzy mathematical programming approach in which fuzziness 

was incorporated into DEA by allowing both the objective function and the 

constraints to be fuzzy. The author explored the use of fuzzy set theory in decision 

making. In his study, three types of fuzzy models (fuzzy mathematical programming, 
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fuzzy regression and fuzzy entropy) were presented to illustrate the types of decisions 

and solutions that were achievable, when the data are vague and prior information is 

inexact and imprecise [17]. 

 The  Fuzzy  CCR Model 

    Assume that there are ݊ of ܯܦ ௌܷ to be evaluated, where every ܯܦ ௝ܷ 	(݆ =

1,2,…… , ݊) consumes varying amounts of ݉ different inputs	ݔ෤௜௝(݅ = 1,2, …… ,݉) to 

produce		ݏ different outputs	ݕ෤௥௝(ݎ = 1,2, …… , ,	෤௜௝ݔ		) Where .(ݏ  ,෤௥௝) representݕ

respectively, the fuzzy input and fuzzy output of the		݆th ܯܦ ௝ܷ 	(݆ = 1,2,…… , ݊). 

With decision variables outputs weights ݑ	௥	(ݎ = 1,2, …… ,  and inputs weights (ݏ

௜ݒ 	(݅ = 1,2,…… ,݉)	being selected, the fractional CCR model with fuzzy data can be 

formulated as follows: 

										ݔܽ݉ ℎ଴ =
				∑ ௦	௥ݑ

௥ୀଵ 		෤௥଴ݕ
∑ ௠	௜ݒ
௜ୀଵ ෤௜଴ݔ

 

			:݋ݐ	ݐ݆ܾܿ݁ݑܵ
				∑ ௦	௥ݑ

௥ୀଵ ෤௥௝ݕ 		
∑ ௠	௜ݒ
௜ୀଵ ෤௜௝ݔ

≤ 1												; 																																								݆ = 1,2, …… , ݊			

௥ݑ                        , ௜ݒ ≥ 0																	; ݎ							 = 1,2, …… , ;			ݏ 											݅ = 1,2, …… ,݉	                            

(3) 

Where "∼" indicate the fuzziness. 

 The  Fuzzy BCC Model 

By the same way, the fractional BCC model with fuzzy data is given as follows: 

										ݔܽ݉ ℎ଴ =
				∑ ௦	௥ݑ

௥ୀଵ ෤௥଴ݕ − ܿ଴		
∑ ௠	௜ݒ
௜ୀଵ ෤௜଴ݔ

 

		:݋ݐ	ݐ݆ܾܿ݁ݑܵ
				∑ ௦	௥ݑ

௥ୀଵ ෤௥௝ݕ −	ܿ଴		
∑ ௠	௜ݒ
௜ୀଵ ෤௜௝ݔ

≤ 1					; 																																					݆ = 1,2,…… , ݊			
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,௥ݑ																											 ௜ݒ ≥ 0													; ݎ											 = 1,2,…… , ;	ݏ 													݅ = 1,2, …… ,݉	 

																													ܿ଴					݀݁ݐܿ݅ݎݐݏ݁ݎ݊ݑ	݊݅	݊݃݅ݏ                                                                          

(4) 

Where "∼" indicate the fuzziness. 

The interpretation of constraints of FCCR and FBCC models is similar to the crisp 

CCR and BCC models. The difference between the two models resides on the manner 

of resolution. The crisp CCR model can be simply solved by a standard LP solver. 

For the FCCR model, the resolution is more difficult and requires methods for fuzzy 

sets [18].  

 The Interval DEA  

   In this section, our attention will be focused on interval fuzzy numbers. In a 

condition that all inputs and outputs are not totally available due to uncertainties, 

these values are only known to lie within the upper and lower bounds represented by 

intervals	[ݔ௜௝
௅, ݔ௜௝௎]  and [ݕ௥௝௅, ௜௝௅ݔ ௥௝௎] , whereݕ > 0 and ݕ௥௝௅ > 0. In order to deal 

with such an uncertain situation, the following pair of linear fractional models has 

been developed to generate the upper and lower bounds of interval efficiency for each 

DMU. Therefore, model (3) can be re-written as follows [19]:  

										ݔܽ݉ ℎ଴௎ =
				∑ ௦	௥ݑ

௥ୀଵ 		௎௥଴ݕ
		∑ ௠	௜ݒ

௜ୀଵ 		௅௜଴ݔ
 

						:݋ݐ	ݐ݆ܾܿ݁ݑܵ
				∑ ௦	௥ݑ

௥ୀଵ 		௎௥௝ݕ
		∑ ௠	௜ݒ

௜ୀଵ 		௅௜௝ݔ
≤ 1																		; 																										݆ = 1,2, …… , ݊		 

,௥ݑ																												 ௜ݒ ≥ 0						; ݎ											 = 1,2,…… , ;							ݏ 											݅ = 1,2,…… ,݉	                             
(5) 
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										ݔܽ݉ ℎ଴௅ =
				∑ ௦	௥ݑ

௥ୀଵ 		௅௥଴ݕ
		∑ ௠	௜ݒ

௜ୀଵ 		௎௜଴ݔ
 

		:݋ݐ	ݐ݆ܾܿ݁ݑܵ
				∑ ௦	௥ݑ

௥ୀଵ ௎௥௝ݕ 		
		∑ ௠	௜ݒ

௜ୀଵ 		௅௜௝ݔ
≤ 1																						; 																												݆	 = 1,2,…… , ݊		 

௥ݑ																					      (6) , ௜ݒ ≥ 0								; ݎ											 = 1,2, …… , ;									ݏ 													݅ = 1,2, …… ,݉	

Where ℎ଴௎ stands for the upper bound of the best possible relative efficiency of 

DMU0, and ℎ଴௅ stands for the lower  bound of the best possible relative efficiency of 

DMU0. 

      Demir, E. (2014) [20] suggested solving the previous two models (5) and (6) by 

changing the crisp data into interval data. Upper and lower frontier data were 

calculated by adding and removing standard errors to each variable, and so each data 

was turned into interval data. To calculate upper frontier efficacy scores, upper 

frontier values of the output data and lower frontier values of the input data were 

used. When it came to the lower frontier efficacy scores, lower frontier values of the 

output data and upper frontier values of the input data were used. The formulas are: 

Upper frontier data = Available data + Standard Error  

Lower frontier data = Available data - Standard Error                                                                      

(7) 

 The suggested Methods 

    Although Demir [20] suggested a method to change the crisp data into interval data 

by using standard errors of the variables to define the data as interval as mentioned 

before, this method sometimes gives negative values when the lower and upper 

bounds are being calculated depending on the nature of the data. The problem here is 
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that, most software packages of DEA cannot treat with negative values. So, the 

method of Demir is being improved to eliminate this problem. In this study, three 

approaches are suggested to express crisp data as interval data in the form of lower 

and upper bounds. The first one is expressed as follows: 

Lower bound data =original data - Standard Error*0.05 

Upper bound data =original data + Standard Error *0.05                                             

(8) 

In the second approach, upper and lower frontier data are calculated by adding and 

removing ratio of standard deviations (one percent) to each variable as follows: 

Lower bound data =original data - Standard deviation *0.01 

Upper bound data =original data + Standard deviation *0.01                                                           

(9) 

In the third approach, the ratio of standard deviations (one percent) is changed to five 

percent as follows: 

Lower bound data =original data - Standard deviation *0.05 

Upper bound data =original data + Standard deviation *0.05                                                         

(10) 

     To apply the suggested intervals; the data should be distributed as a normal 

distribution. In other words, these techniques assume that the variables are normally 

distributed.  If a measurement variable does not fit a normal distribution, data 

transformations should be made. Data transformations such as square root, log, and 

inverse are commonly used tools that can serve many functions in quantitative 

analysis of data for improving the normality of variables. 
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IV. APPLICATION AND RESULTS 
 
     Manufacturing industries play a very significant role in whole economy. So, 

utilizing classical and interval DEA models, this paper examines the technical 

efficiency level of Ethiopian manufacturing industries for the year of 2008. The data 

used in this application was extracted from the Central Statistical Agency (CSA) of 

Ethiopia database. The data is taken from Hailu, K. B. and Tone, K. (2014) [21]. For 

the purpose of efficiency measurement, single-output and 3-input production 

technology for Ethiopian manufacturing is being used. Output is measured by the 

gross value of all outputs produced by the firm. The inputs include: (i) the number of 

employees measured by the sum of permanent and temporary workers, (ii) capital 

input measured by the net value of fixed assets at the end of the survey year, (iii) 

intermediate inputs aggregated as the sum of the values of raw materials, fuel and 

lubricating oil, electricity, wood and charcoal for energy for each establishment and 

other industrial costs. The types of industries that are used in the application include 

manufacture of: (1) Food and beverage, (2) Textiles, (3) Wearing apparel, (4) 

Tanning, leather and footwear, (5) Wood and wood products, (6) Paper and printing, 

(7) Chemical and chemical products, (8) Rubber and plastics products, (9) Non-

metallic mineral products, (10) Fabricated metal products (11) Basic iron and steel, 

(12) Machinery and equipment, (13) Motor vehicles and (14) Furniture (see 

Appendix A). 

   To evaluate the relative efficiency values by using classical and interval DEA 

models, the steps are made as follows: first, calculating the efficiency values of 

classical DEA models (CCR / BCC). Second, testing whether measurement variables 

fit a normal distribution or not. Finally, calculating the efficiency values of interval 

DEA models (CCR / BCC) based on the suggested methods; formulas (8, 9, 10). 
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For solving data envelopment analysis (DEA) models, MaxDEA package has been 

employed. Efficiency values of classical DEA models (CCR / BCC) are calculated as 

shown in table (1): 

Table (1) :  Calculated efficiency values with classical DEA models (CCR / BCC) 

DMU 
Efficiency scores with CCR  

model 
Efficiency scores with BCC  

model 
S1 1 1 
S2 0.6372 0.6999 
S3 0.7139 0.72 
S4 0.7769 0.7819 
S5 1 1 
S6 0.9501 1 
S7 0.8573 0.8645 
S8 0.7568 0.7846 
S9 0.9945 1 
S10 1 1 
S11 0.9783 0.9878 
S12 0.6974 1 
S13 1 1 
S14 0.7837 0.7862 

 

In table (1), according to CCR model results; only four units are efficient and the rest 

of the units are deemed inefficient relative to other efficient units. While the BCC 

model is more flexible and allows more units to be efficient. So, seven units are 

efficient and the rest of the units are deemed inefficient relative to other efficient 

units. 

   To apply the suggested intervals (8, 9, 10); the data should be distributed as a 

normal distribution as mentioned before. This assumption was examined by SPSS 
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program by using Kolmogorov-Smirnov test and it is found that all variables are 

normally distributed. 

   Efficiency values of interval DEA models (CCR / BCC) based on five percent of 

standard error, the formulas (8), are calculated and placed on   table (2) for interval 

CCR model and also placed on table (3) for interval BCC model as follows: 

Table (2) :  Lower and upper frontier efficiency scores with interval CCR model 
DMU Lower efficiency values  Upper efficiency values  

S1 1 1 
S2 0.702 0.5672 
S3 0.611 0.6263 
S4 0.7817 0.7661 
S5 0.9379 1 
S6 1 0.8766 
S7 0.8632 0.8436 
S8 0.7449 0.7667 
S9 0.9852 1 

S10 1 1 
S11 0.9566 0.9824 
S12 0.5742 0.8386 
S13 1 1 
S14 0.7462 0.7405 

 

In table (2), according to lower efficiency scores; only four units are efficient. While 

in the upper efficiency scores, five units are efficient and the rest of the units are 

deemed inefficient relative to other efficient units. 
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According to the results of interval BCC model as shown in table (3), seven units are 

efficient and the rest of the units are deemed inefficient relative to other efficient 

units in both lower and upper efficiency scores. 

Table (3) :  Lower and upper frontier efficiency scores with interval BCC model 
DMU Lower efficiency values  Upper efficiency values  

S1 1 1 
S2 0.7041 0.6955 
S3 0.7401 0.6965 
S4 0.7845 0.7792 
S5 1 1 
S6 1 1 
S7 0.8665 0.8624 
S8 0.7876 0.7816 
S9 1 1 

S10 1 1 
S11 0.9882 0.9873 
S12 1 1 
S13 1 1 
S14 0.7978 0.7732 

 

Efficiency values of interval DEA models (CCR / BCC) based on one percent of 

standard deviation, the formulas (9), are calculated and placed on tables (4) and (5) 

for interval CCR and BCC models, respectively, as follows: 
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Table (4) :  Lower and upper frontier efficiency scores with interval CCR model 
DMU Lower efficiency values  Upper efficiency values  

S1 1 1 
S2 0.6939 0.5831 
S3 0.6394 0.6449 
S4 0.7828 0.7688 
S5 1 1 
S6 1 0.8938 
S7 0.8647 0.847 
S8 0.7486 0.7642 
S9 0.9876 1 

S10 1 1 
S11 0.9681 0.9814 
S12 0.6035 0.8018 
S13 1 1 
S14 0.7629 0.7505 

 

Table (4) showed that only five units are efficient and the rest of the units are deemed 

inefficient relative to other efficient units according to both of lower and upper 

efficiency scores. 

According to the results of interval BCC model as shown in table (5), seven units are 

efficient and the rest of the units are deemed inefficient relative to other efficient 

units in both  lower and upper efficiency scores (i.e. the results are similar to table 3).  
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Table (5) :  Lower and upper frontier efficiency scores with interval BCC model 
DMU Lower efficiency values  Upper efficiency values  

S1 1 1 
S2 0.7031 0.6966 
S3 0.7353 0.7028 
S4 0.7839 0.7799 
S5 1 1 
S6 1 1 
S7 0.866 0.863 
S8 0.7869 0.7824 
S9 1 1 

S10 1 1 
S11 0.9881 0.9874 
S12 1 1 
S13 1 1 
S14 0.795 0.7766 

 

Efficiency values of interval DEA models (CCR / BCC) based on five percent of 

standard deviation, the formulas (10), are calculated and placed on tables (6) and (7) 

for interval CCR and BCC models, respectively, as follows: 

Table (6) :  Lower and upper frontier efficiency scores with interval CCR model 
DMU Lower efficiency values  Upper efficiency values  

S1 1 0.7422 
S2 0.6627 0.3724 
S3 0.3536 0.4427 
S4 0.7639 0.6351 
S5 0.0758 1 
S6 0.9625 0.6606 
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Table (6) :  Lower and upper frontier efficiency scores with interval CCR model 
DMU Lower efficiency values  Upper efficiency values  

S7 0.8388 0.7101 
S8 0.7037 0.6363 
S9 0.9601 0.7707 

S10 1 1 
S11 0.8209 0.935 
S12 0.3102 1 
S13 0.8148 1 
S14 0.5222 0.5675 

 

Table (6) showed that, only two units are efficient according to lower efficiency 

scores. While in the upper efficiency scores, four units are efficient and the rest of the 

units are deemed inefficient relative to other efficient units. 

The results of interval BCC model as shown in table (7) demonstrate that seven units 

are efficient according to lower efficiency scores; eight units are efficient according 

to upper efficiency scores and the rest of the units are deemed inefficient relative to 

other efficient units.  

Table (7) :  Lower and upper frontier efficiency scores with interval BCC model 
DMU Lower efficiency values  Upper efficiency values  

S1 1 1 
S2 0.7152 0.6954 
S3 0.7829 0.6058 
S4 0.7915 0.7752 
S5 1 1 
S6 1 1 
S7 0.8716 0.8609 
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Table (7) :  Lower and upper frontier efficiency scores with interval BCC model 
DMU Lower efficiency values  Upper efficiency values  

S8 0.7954 0.7741 
S9 1 1 

S10 1 1 
S11 0.9892 1 
S12 1 1 
S13 1 1 
S14 0.824 0.7769 

 

V. FINAL RESULTS AND CONCLUSION 

    The final results for the efficient units via classical and interval DEA models (the 

suggested approaches using five percent of standard error (S.E*0.05), one percent of 

standard deviation (S.D*0.01), and five percent of standard deviation (S.D*0.05) 

intervals) are summarized in the following tables (8) and (9) for the CCR and BCC 

models, respectively, as follows: 

  Table (8):  Efficient units using CCR model 
 

Classical DEA 
Lower and upper 
frontier efficient 

(S.E*0.05) 

Lower and upper 
frontier efficient 

(S.D*0.01) 

Lower and upper 
frontier efficient 

(S.D*0.05) 

 
 

 
S1 
S5 

S10 
S13 

Lower 
 

Upper Lower Upper Lower Upper 

 
S1 
S6 
S10 
S13 

 

 
S1 
S5 
S9 
S10 
S13 

 

 
S1 
S5 
S6 
S10 
S13 

 
S1 
S5 
S9 
S10 
S13 

 
S1 

S10 

 
     S5 

S10 
S12 
S13 
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  Table (9):  Efficient units using BCC model 
 

Classical DEA 
Lower and upper 
frontier efficient 

(S.E*0.05) 

Lower and upper 
frontier efficient 

(S.D*0.01) 

Lower and upper 
frontier efficient 

(S.D*0.05) 

 
 

 
S1 
S5 
S6 
S9 

S10 
S12 
S13 

Lower 
 

Upper Lower Upper Lower Upper 

 
S1 
S5 
S6 
S9 
S10 
S12 

  S13 

 
S1 
S5 
S6 
S9 

S10 
S12 

  S13 

 
S1 
S5 
S6 
S9 
S10 
S12 

  S13 

 
S1 
S5 
S6 
S9 
S10 
S12   
S13 

 
S1 
S5 
S6 
S9 

S10 
S12   
S13 

 
     S1 
     S5 
     S6 
     S9 
     
S10 
S11              
S12 
S13 

 

Table (8) showed the efficient units using CCR model in different cases. According 

to these results, only unit 10 remains efficient in all cases and the suggested 

approaches that use five percent of standard error (S.E*0.05) and one percent of 

standard deviation (S.D*0.01) intervals are seemed to be better than the others. 

According to the results of BCC model in table (9), there is no difference between 

efficient units in all cases and all the results are the same; so seven units, namely, S1, 

S5, S6, S9, S10, S12 and S13 were identified as the best practice units.  

Another point of view, according to the results of both CCR and BCC models, Food 

and beverage, Wood, Paper and printing, Non-metals, Basic iron and steel, 

Machinery and equipment, and Motor vehicles industries are identified as the best 
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performance units. So, we recommend that the decision makers should pay more 

attention to other inefficient industries to improve their efficiencies. 

 

REFERENCES 

[1] Avkiran, N.K. (2001). Investigating technical and scale efficiencies of Australian 

Universities through data envelopment analysis. Socio-Economic Planning Sciences, 

Vol. 35, PP. 57-80. 

[2] Jablonsky, J. (2013). Two-stage data envelopment analysis model with interval 

inputs and outputs. International Journal of Trade, Economics and Finance, Vol. 4, 

No. 1, pp. 55-59. 

[3] Kazemi, M., & Alimi, A. (2014). A fully fuzzy approach to data envelopment 

analysis. Journal of Mathematics and Computer Science, Vol. 11, pp. 238-245. 

[4] Iddrisu, A. (2014). Measuring rural bank efficiency in Ghana: an application of 

data envelopment analysis (DEA) approach. Journal of Human and Social Research, 

Vol. 3, No. 2, pp.41-59. 

[5] Abd-Aziz, N. A., Janor, R.M., & Mahadi, R. (2013). Comparative departmental 

efficiency analysis within a university: a DEA approach. Procedia - Social and 

Behavioral Sciences, vol. 90 pp.540 – 548. 

[6] Saricam, C. & Erdumlu, N. (2012). Evaluating efficiency levels comparatively: 

data envelopment analysis application for Turkish textile and apparel industry. 

Journal of Industrial Engineering and Management Vol. 5(2): 518- 531. 

[7] Ahmadi, V. & Ahmadi, A. (2012). Application of data envelopment analysis in 

manufacturing industries of Iran. Interdisciplinary Journal of Contemporary 

Research in Business, Vol. 4, No. 8, pp. 534-544. 



  

 

– – 

 
 

- 93 - 
 

[8] Kumar, S. & Arora, N. (2012). Evaluation of technical Efficiency in Indian sugar 

industry: an application of full cumulative data envelopment analysis. Eurasian 

Journal of Business and Economics 2012, Vol.5 (9), pp. 57-78. 

[9] Chueh, H. & Jheng, J. (2012). Applying data envelopment analysis to evaluation 

of Taiwanese solar cell industry operational performance. International Journal of 

Computer Science & Information Technology (IJCSIT) Vol. 4, No. 4. 

[10] Saraçli, S., Kiliç, I., Doĝan, I. & Gazeloĝglu, C. (2013). An application of data 

envelopment analysis on marble factories. Journal of Inequalities and Applications, 

2013:139. 

[11] Akgöbek, Ö. & Emre Yakut, E. (2014). Efficiency measurement in Turkish 

manufacturing sector using data envelopment analysis (DEA) and artificial neural 

networks (ANN). International Journal of Finance and Banking 01, 02: 36-47. 

[12] Baran, J., Wysokinski, M., Staš, D., Samolejová, A., & Lenort, R. (2016). 

Efficiency of polish metallurgical industry based on data envelopment analysis. 

METABK, Vol. 55(2), pp. 245-248. 

[13] Charnes, A., Cooper, W.W. & Rhodes, E. (1978). Measuring the efficiency of 

decision making units. European Journal of Operations Research, Vol. 2, pp. 429-

444.  

[14] Banker, R., Charnes, A., & Cooper, W.W. (1984). Some models for estimating 

technical and scale inefficiencies in Data Envelopment Analysis. Management 

Science, Vol. 30, pp. 1078-1092.  

[15] Argyrioy, G., & Sifaleras, A. (2013). An AMPL optimization software library 

for data envelopment analysis. XL Balkan Conference on Operational Research. 

[16] Isabels, K.R., & Uthra, G. (2012). An application of linguistic variables in 

assignment problem with fuzzy costs. International Journal of Computational 

Engineering Research, Vol. 2 Issue. 4. 



  

 

– – 

 
 

- 94 - 
 

[17] Sengupta, J.K. (1992). A fuzzy systems approach in data envelopment analysis. 

Computers and Mathematics with Applications, Vol. 24, pp. 259–266. 

[18] Tlig, H. (2013). A fuzzy data envelopment analysis model to evaluate the 

Tunisian banks efficiency. International Journal of Scientific & Engineering 

Research, Vol.  4,  Issue 9. 

[19] Wang, Y., Greatbanks, R. & Yang, J. (2005). Interval efficiency assessment 

using data envelopment analysis. Fuzzy Sets and Systems, vol. 153, pp.347–370. 

[20] Demir, E. (2014). A comparison of classical and fuzzy data envelopment 

analyses in measuring and evaluating school activities. Turkish Journal of Fuzzy 

Systems, Vol. 5, No. 1, pp. 37-58.   

[21] Hailu, K. B., & Tone, K. (2014). Setting handicaps to industrial sectors in DEA 

illustrated by Ethiopian industry. GRIPS Discussion Paper14-07. 

 

  



  

 

– – 

 
 

- 95 - 
 

Appendix (A) 

(Original dataset for the year 2008) 
DMUs Industry  Companie

s 

Labor (I)   Capital (I) Intermediate 

(I) 

Production 

(O) 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

S10 

S11 

S12 

S13 

S14 

Food and beverage 

Textiles 

Wearing apparel 

Tanning, leather 

&footwear 

wood 

Paper and printing 

Chemicals  

Rubber and plastics 

Non-metals 

Basic iron and steel 

Fabricated metals  

Machinery and equipment 

Motor vehicles 

Furniture 

٣٤٩ 

٢١ 

٢٦ 

٦٢ 

٢٨ 

٩٦ 

٦١ 

٧٥ 

٢٤٣ 

١٤ 

٤٩ 

٩ 

١٠ 

170 

٣٥٣٩١.١٤٥

٨  

١٨٣٦٣.٧٩١

٦  

٤٨١٥.٧٩١٦

٥  

٧٨٨٧.٥٦٢٥  

١٩٥٩.٨١٢٤

٨  

٧٩٦٧.٦٤٥٨

٥  

٦٤٢٦.٥٠٠٠

١  

٧٠٨٣.١٦٦٦

٥  

١٠٣٠٠.٧٥  

١٨٢١.٦٠٤١

٨  

٢٤٨٢.٨٩٥٨

٤  

١٣٠٣.٥  

١٢١٤.٤١٦٦

٦  

4529.18749 

١٧٨٨١٦٨٢٢

١ 

٣٨١٠٥٧٤٦٩ 

١٠٤٣٥٣٧٣٢ 

٣٦٣٣٦١٧٤٧ 

٦٨٧١١٤١.٣

١ 

١٨٠٥٥٠٠١٨ 

٢٨٦٨٣٤١٦١ 

٣٦١٣٨٥٦٧٢ 

٦٧٧٣٥٦٦٦٧ 

٢١٢٢٢٣٠٠١ 

٨٨٣٠٩٦٤٦.

٧ 

٩٢٠١٨٥٣٦.

٢ 

٦٠٩٦٨٧٦٥.

٨ 

93204031.8 

١٤٩٥٢٣٢٢٤٦ 

٣٩٥١٨٨٣٧٧ 

٦٥٣١٨٠٣٢.١ 

٥٦١٠٦٤٩٦٨ 

٢٠١٧٦٦٠٠.١ 

٣٢٠١٥٧١٦٤ 

٤٨٢٢٣١٥٢٢ 

٤١٧٦٥٧٨٢٩ 

٥٧٦١٨٣١٥١ 

٦٣٣٣٤٠١٦٤ 

١٨٩٥٤٩٩٩١ 

٦٧٠٧٥٠٢٨.٣ 

٢٣٣٤٣١٧٨٦

87966624.3 

٤٠٦٨٠٠٣٤٩٧  

٦٩٢١٨٧٧٧٤  

١٢٩٧٥٠٨٢٥  

٨٩٠٦٤٧٩٦٧  

٥٦٧٢٩٦٦٠.١  

٦٣٨٥٥٨٠١٧  

٨١٨٧٨٠٥٩٨  

٧٢٧٠٧٨٦٧٩  

١٣٧٧٣٩٢٦٩٦  

١٠٠٢٦٠٩٤٠٨  

٣٤٢٦١٥٧٦٦  

١١٦٤٢٩٨٧٤  

٣٢٧٠٣١٨٥٠  

189933023 
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Stress-Strength Reliability of (Y<X) for Inverse Wiebull 
distribution using Hybrid Censored Samples 

Abstract 

In this article, we introduce the estimation of stress- 
strength reliability R=P(Y<X), when X and Y are two 
independent inverse Weibull (IW) lifetime models having the 
same shape parameters but different scale parameters 
under hybrid censored samples. First, the maximum 
likelihood estimator and its asymptotic distribution are 
obtained. Based on the asymptotic distribution, the 
confidence interval of R can also be obtained and finally the 
Bayesian estimate of R using squared loss function is 
proposed. 

Key Words: Inverse Weibull distribution; Hybrid censoring; 
Bayesian estimation; squared loss function. 
 
Introduction 
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Weibull distribution was introduced by Weibull in 
1935, from this time it was used very effectively in analyzing 
various lifetime data. The hazard function of Weibull is 
decreasing or increasing depending on the shape 
parameter. When the data has a non-monotone hazard 
function, the Weibull distribution cannot be used, therefore, if 
the empirical study indicates that the hazard function of the 
underlying distribution is not monotone, and it is unimodal, 
then inverse Weibull (IW) distribution may be used to 
analyze such data set (Kundu and Howlader (2010)). It is a 
lifetime probability distribution that can be used in the 
reliability engineering discipline. The inverse Weibull 
distribution has the ability to model failure rates, which is 
quite common in reliability and biological studies. The IW 
distribution plays some important roles in other areas, such 
as describing the degradation phenomena of mechanical 
components, describing the context of a load strength 
relationship for a component and providing the good fit to 
survival data. Extensive work has been done on the IW 
distribution, such as Keller and Kamath (1982), Calabria 
and Pulcini (1989, 1990, 1992, 1994), Jiang and Xiao 
(2003) Mahmoud, Sultan and 
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The inference of stress-strength reliability in statistics is an 
important topic of interest. It has many applications in 
practical areas. Let X be the strength of a component and Y 
be the stress applied to the component, then R can be 
considered as a measure of the component performance. 
The component fails if and only if at any time the applied 
stress is greater than its strength (Li and Hao 2017). The 
estimation of the stress-strength parameter R has attracted 
much attention recently in the statistical literature authors. 
Singh et. al ( 2015) present estimate the stress-strength 
reliability parameter R = P(Y < X), when X and Y are 
independent inverted exponential random variable. They 
discussed the maximum likelihood and Bayesian estimator R 
and its asymptotic distribution are obtained. Bi and Gui 
(2017) present estimating stress-strength reliability for 
inverse Weibull using complete data when X and Y are 
independent but not identically inverse Wiebull (IW) 
distributed random variables. They used an approximate 
maximum likelihood estimator. The asymptotic confidence 
interval and two bootstrap intervals are obtained. Using the 
Gibbs sampling technique, Bayesian estimator and the 
corresponding credible interval are obtained. And Analysis 
of a real dataset is performed. 
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Azimi et al (2012) presented the Bayesian estimators of 
parameter and Reliability function are obtained  of Rayleigh 
distribution using asymmetric loss functions such, LINEX 
loss function, Precautionary loss function, entropy loss 
function under a progressively type II censored sample. Li 
and Hao (2017) introduced The maximum likelihood 
estimator and the Bayesian estimate of R and the 
corresponding confidence intervals when X and Y are 
independent identically inverse Wiebull (IW) distributed 
random variables for IW using complete data.  
For more details see, for example Awad et al. (1981), 
Kundu and Gupta (2005, 2006), Kundu and Ragab (2009) 
Asgharzadeh et al. (2013) for complete samples. Recently, 
some authors have also investigated the estimation of of R 
for some lifetime distributions based on record and censored 
data. See for example, the work of Baklizi (2008), 
Asgharzadeh et al. (2015),  
 
Type-I and Type-II censoring schemes are the two most 
popular censoring schemes which have been used in 
practice. In Type-I censoring scheme, the experimental time 
is fixed, but the number of failures is random, whereas in 
Type-II censoring scheme, the experimental time is random 
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but the number of failures is fixed. A hybrid censoring is a 
mixture of Type-I and Type-II censoring schemes and it 
can be described as follows. Suppose n identical units are 
put on a life test. The lifetimes of the sample units are 
independent and identically distributed (i.i.d) random 
variables. The test is terminated when a pre-specified 
number r out of n units has failed or a pre-determined time 
T, has been reached. It is also assumed that the failed 
items are not replaced. Therefore, in hybrid censoring 
scheme, the experimental time and the number of failures 
will not exceed T and r, respectively Childs et al(2003). 
Under the hybrid censoring scheme we have one of the two 
following types of observations: 
1: (x1:n<x2:n<…<xh:n) if  xh:n<T 
2: (x1:n<x2:n<…<xk:n) if k<h, xk :n<T< xk+1:n 
Where (x1:n<x2:n<…) are the observed ordered failure time to 
the experimental units. 
Asgharzadeh et.al (2015). 
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Inverse Weibull Distribution  
 

The probability density function of the Weibull 
distribution is given by: 
 

0,,),;( 1   
 zezxf z

                         (1) 
 
Where   is the shape parameter and   is the scale 
parameter 
Let X denote the random variable from Weibull model in 
equation (1), let 

Z
X 1
  

Then the random variable X is said to have a two-
parameter IW distribution and its probability density function 
(PDF) is given by 

0,,,),;( )1( 
 
 xexxf x .                 (2) 

 
And the cumulative distribution function (CDF), reliability 
function and hazard function are given by: 

0,,)( 
 
 xexF x                                         (3) 

0,1)( 
 
 xexR x                                          (4) 
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Therefore the stress-strength structural R= P(Y<X) is 
reliability parameter R. 
Thus R= P(Y<X) is the characteristic of the distribution of X 
and Y. 
Then reliability of the component is: 
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Maximum Likelihood Estimation of R 
 

To derive the MLE of R, based on hybrid censored 
data on both variables first we obtain the MLE’s of 1,   
and 2 , let X=(X1,X2,…,Xr1) for =(X1:n,X2:n,…,Xr1:n) is a 
hybrid censored sample from exp ( 1, ) with censored 
scheme (r1,T1) and Y=(Y1,Y2,…,Yr2) for =(Y1:n,Y2:n,…,Yr1:n) is 
a hybrid censored sample from  exp ( 2, )  with censored 
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scheme (r2,T2). Therefore, the likelihood function of 1,   
and 2 is given by: 
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c1 = n(n - 1)(n - 2) … (n - r1 + 1); c2 = m(m - 1)(m - 2) 
… (m – r2 + 1) 
V1 = min(XR1 ; T1);    V2 = min(XR2 ; T2); 
 
Using (1) and (2) without the multiplicative constant, the 
likelihood function of  1,   and 2  can be writing as: 
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(8) 
Hence, the log likelihood function 
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Differentiating the log-likelihood function ),,( 21 l partially 
with respect to 1,    and 1  then equating to zero we have 
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From (11) and (12), we can get 
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Then ̂ can be obtained as a solution of the non-linear 
equation as follow: 
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Here, ̂ can be obtained from the non-linear equation 

 )(h  
where 
 

)log)(log(ˆ

)log)(log(ˆloglog

)(
)(

222
1

2

111
1

1
11

21

2

121

vvrmyy

vvrnxxyx

whererrh

j

r

j
j

r

i
ii

r

j
j

r

i
i




































                               

(15) 
 
The MLE of stress-strength reliability R becomes 
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Asymptotic Confidence Intervals of R 
 

In this section asymptotic distribution of )ˆ,ˆ,ˆ(ˆ
21    

and R̂ firstly, then the asymptotic confidence interval of R 
can be obtained. Let us denote the expected Fisher 
information matrix of ),,( 21    as I (θ) =(Iij (θ);i, j =1,2,3) 
Therefore 
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Then we get that 
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Let 1)(  IA is the asymptotic variance- covariance matrix, 
where 1)( I is inverting of Fisher information matrix. 
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As n→∞,m→∞, 

)ˆ,ˆ,ˆ(,0()ˆ(),ˆ(),ˆ( 21
1

2211   ANnnn  



 
– – 

 
 

- 110 - 
 

To obtain asymptotic confidence interval for R, we proceed 
as follows (Rao, 1973) : 
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Then the asymptotic 100(1−  )% confidence interval for R 
would be (L,U).  
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
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2
1(  percentile of the standard normal 

distribution and  
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R̂ is given by equation (17)  

Bayesian Estimation of  R 
 

In this section the Bayes estimation of R under the 
squared error loss can be obtained if the shape parameter 
  is known (non-informative distribution), the scale 
parameter 21  and  has a conjugate prior, which is a gamma 
prior. And consider the priors 1,   and 2 are independent.  
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Therefore, we can get the joint prior distribution 1,   and 2  
as following: 
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(26) 
Based on data the joint posterior density function of 1,   
and 2 can be obtained as following: 
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Where ),,( 21 dataL  is defined in (8) 
 
Under squared-error loss function, the Bayesian estimator 
of 1,   and 2 is the mean of the posterior density given by: 
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Simulation Study  
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In this section, we compare the performance of the 
MLE and Bayesian estimations (under the squared error 
loss function) of R under the different sample sizes and 
different parameter values by using Monte Carlo simulation. 
We compare the performances of the MLE and the Bayes 
estimates in terms mean squares errors (MSE) and initial 
estimate to α=1. 
Table (1): MSE for MLE and Bayesian estimation for R 
when m = n =40 and )1,5.1,1(),,( 21   
r1,T1 r2,T2 MSE 

(MLE) 
MSE(Bayesian) 

(15,1) (15,1) 
(25,1) 
(40,2) 

0.0091 
0.0087 
0.0077 

0.0083 
0.0071 
0.0069 

(25,1) (15,1) 
(25,1) 
(40,2) 

0.0088 
0.0079 
0.0070 

0.0077 
0.0068 
0.0061 

(35,2) (15,2) 
(25,2) 
(40,2) 

0.0081 
0.0073 
0.0064 

0.0071 
0.0063 
0.0054 
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Conclusion 
 

In this paper the maximum likelihood estimation and 
the Bayesian estimation of  Pr(Y<X) when X and Y are 
independent random variable which Continued  Inverse 
Weibull  distribution with the same shape parameter and 
different scale parameter is presented, It is assumed that 
the data are hybrid censored for both X and Y. and the 
asymptotic distribution and confidence intervals, is 
presented. We observed that the MLE and Bayesian 
estimations of R cannot be obtained in explicit form.  So we 
used a Monte Carlo simulation which proved that the 
performances of the Bayes estimators are very satisfactory. 
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