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Abstract: An exponentiated general class (EGC) of distributions was considered as the 

underlying population of this study. Based on a progressive Type-II censored sample, the 

maximum likelihood and Bayesian estimation of the parameters, the reliability and hazard rate 

functions of an EGC were studied. Bayesian estimations were conducted under the squared 

error and linear-exponential (LINEX) loss functions. The maximum likelihood and Bayes 

predictors of the life lengths of all censored units in the progressive sample are discussed. In 

addition, the Bayes predictors of future observables were obtained based on the two-sample 

prediction. A numerical example is given to illustrate some of the results. 

Keywords Exponentiated general class; Progressive Type-II censored sample; squared error 

and LINEX loss functions; Maximum likelihood estimation (prediction); Bayesian estimation 

(prediction); Two-sample prediction. 

 

1. Introduction 

Currently, life testing studies are becoming more important in many fields to obtain 

information on the time of occurrence for an event of interest. Many distributions are used as 

lifetime models. Adding one or more parameters to a distribution function makes the resulting 

distribution more flexible for modeling the data. That is, adding a parameter to a cumulative 

lifetime distribution function );( tG  by exponentiation produces distributions that have a 

cumulative distribution function (CDF) of the form   );(),;( tGtF  . Such a distribution is 
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called an exponentiated model, and if   is a positive, this model is also referred to in the 

literature as Lehman alternatives, as has been recognized by Gupta et al. (1998).  

It is interesting to examine families of lifetime distributions with useful properties that 

enable them to describe lifetimes of units. This study aimed to discuss a generalized family of 

distributions, called the exponentiated general class (EGC). The EGC was suggested based on 

the general class that was used by AL-Hussaini (1999) and Soliman (2002) as a lifetime model.  

This class has been modified by adding a parameter by exponentiation to its CDF, which 

is regarded as an added advantage over the general class. It should be mentioned that the EGC 

was proposed by Abdel-Hamid and AL-Hussaini (2009) as the lifetime of a product in a step-

stress model and was considered as an exponentiated distribution. The EGC generalizes many 

distributions that are commonly used in life testing and in the analysis of lifetime data. Such 

distributions are considered by many authors as ‘generalized’ distributions. The word 

exponentiated instead of generalized may lend more clarification, expressiveness and accuracy. 

Distributions that can be derived from the EGC include the following: exponentiated 

exponential (EE), exponentiated Weibull (EW), Burr X (exponentiated Rayleigh), 

exponentiated modified Weibull, exponentiated Pareto (EP), exponentiated gamma, among 

others. That is, the results obtained for the EGC could be applied to those lifetime distributions.. 

In many studies, complete information on the lifetimes of all of the experimental units may not 

be available for several reasons.  

The progressive Type-II censored sampling is an important and flexible scheme in life-

testing experiments in which the experimenter can remove some units at various stages during 

the experiments. This scheme is useful for saving time, effort and cost.  
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Estimating the unknown parameters of the distributions is one of the important problems in 

statistical studies. In this paper, the maximum likelihood (ML) and Bayesian estimations are 

studied. 

In addition, the general problem of statistical prediction (inferring the values of 

unknown observations or their functions based on the informative samples) has its uses in a 

variety of areas. The predictors of times to failures of units censored in multiple stages in a 

progressive censored sample are discussed in this paper. Raqab et al. (2010) studied this type of 

prediction. Moreover, Basak and Balakrishnan (2009) considered different predictors based on 

the progressive Type-II censored samples from the Pareto and the normal distributions. 

Furthermore, Madi and Raqab (2009) studied the Bayesian prediction based on a progressive 

sample from an EE distribution. 

This paper is concentrated on Bayesian prediction bounds for future order statistics from 

an EGC using a two-sample scheme based on a progressive Type-II informative sample. Some 

related works can be found in Wu et al. (2006), Ali Mousa and Jaheen (2002) and Jaheen 

(2003). The focus of this paper was to estimate the parameters, reliability function (RF) and 

hazard rate function (HRF) as well as to predict two different situations based on the 

progressive Type-II censored scheme. The estimation and prediction were obtained for two 

cases: 

(i) The EGC depends on the only unknown exponent parameter. 

(ii) The EGC depends on a vector of unknown parameters.  

The rest of the paper is organized as follows. In Section 2, the EGC and the related model 

are discussed. ML estimations are presented in Section 3. In Section 4, Bayesian estimations 

under the squared error (SE) and Linear-exponential (LINEX) loss functions are obtained. The 

ML and Bayes predictions of the lifetime lengths of all censored units in the progressive sample 
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are discussed in Section 5. In Section 6, the Bayes predictors of future observables based on a 

two-sample scheme in which the informative sample is progressive Type-II censored and the 

future sample is order statistics is studied. When only the exponent parameter is unknown and 

in the case of an unknown vector of parameters, two cases are considered in each section. 

Finally, a numerical example is given in Section 7 to illustrate the method of estimation and the 

Bayes predictions of the lifetime lengths of all of the censored units in the progressive sample. 

 

2. The Exponentiated General Class 

If );( tG  is a base CDF, then by adding one more parameter (say  ) by exponentiation, the 

CDF of the exponentiated distribution ),;( tF  takes one of the following forms: 

(a)   );(),;( tGtF  , or                                                                                                  (1) 

(b)   ,);(11),;(  tGtF                                                                                              (2) 

where );( tG  is any CDF, and 0  (see Kakade et al. (2008) and Persson and Ryden (2010)). 

It is worth noting that, in some studies, the exponentiated model in the form (1)  is also known 

as a proportional reversed hazard model. However, the exponentiated model form in (2) is 

known as a proportional hazard model. 

Any CDF for a random variable T  can be written in the following form: 

  .)(exp1)( ttG                                                                                                                   (3) 

The probability density function (PDF) corresponding to (3) is 

 ,)(exp)()( tttg                                                                                                                  (4) 

where  )(1ln);()( tGtt    ,                                                                                          (5) 
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  is a vector of parameters, and )(t  is assumed to be a continuous, monotone increasing, 

differentiable function such that 0)( t  as t  and )(t  as t  (see Abdel-

Hamid and AL-Hussaini (2009) and AL-Hussaini and Al-Awadhi (2010)). 

The EGC could be a special case of form (1) of the exponentiated model with the base CDF as 

the general class in (3). Suppose that T  is a positive random variable denoting the life length of 

a component having a CDF  in  (1) and a PDF as follows:  

  1);();(),;(   tGtGtf , 0,0  t                                                                             (6) 

such that );( tG  is a base CDF that depends only on  , and );( tG  is assumed to be an 

absolutely continuous CDF that is defined on the positive half of the real line as follows. 

 );(exp1);(  ttG      and    );(exp);();(  tttG  ,                                           (7) 

where   






  

1
),;(1ln);( tFt ,                                                                                        (8) 

),(  , 0 ,  k ,,, 21  , where kjj ,,2,1;0  ,   is a parameter space and 

);(  t  is a non-negative, continuous, monotone increasing and differential function of t  such 

that 0);(  t  as  0t  and );(  t as t . 

The corresponding RF and HRF are given by the following, respectively: 

  );(1),;( tGtR   and                                                                                                       (9) 

  
 







);(1

);();(exp);(
),;(

1

tG
tGtt

th







.                                                                            (10) 

3. Maximum Likelihood Estimation 

In this section, the parameters  ,  , RF and HRF at time 0t  are estimated based on the 

progressive Type-II censored sample from the EGC by using ML methods for two cases; in the 
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first case,   is the only unknown parameter, and in the second case all parameters,   and   are 

unknown. 

3.1 Case (1):   is unknown and   is known 

          Assuming that )(tG  in (6) depends on known parameters, and then );( tF  depends only 

on the unknown exponent parameter .  

Let  mtttt ,,, 21  , with mttt  21  denoting a progressive Type-II censored sample 

from EGC( ) with mRRR ,,, 21   being the progressive censoring scheme.  

The joint PDF of all m  progressive Type-II censored order statistics ),,,( 21 mtttt   is the 

following: 

 



m

i

R
ii

itFtftL
1

);(1);();( ,                                                                                        (11) 

where   is a vector of parameters (see Balakrishnan and Aggarwala (2000)). 

By substituting );(),;(  tFtF   and );(),;(  tftf  , which are given by (1) and (6), 

respectively, with known  , the likelihood function (LF) based on the progressive Type-II 

censored sample from the EGC can be written as: 

     ,)(1)();(
1




m

i

R
ii

m itGtGtL                                                                                    (12) 

where )( itG  and )( itG  are defined in (7) with known  . 

To derive the ML estimation of the unknown parameter  , denoted by ML̂ , we have to solve 

the first derivative of the logarithm (12) in  as follows:  

   ,01);()(ln
1




m

i
ii tWtGm



                                                                                              (13) 

where   1)(
);(


 

i

i
i tG

RtW .                                                                                                   (14) 
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The Equation (13) is a nonlinear equation and requires the use of a numerical technique. 

For a given value of t , the ML estimators of RF and HRF can be obtained by the invariance 

property of ML estimations by replacing   by ML̂ in (9) and (10), respectively, with known  . 

3.2 Case (II):   and   are unknown 

In this case, );( tG  in (7) is assumed to depend on an unknown k -dimensional vector 

),,,( 21 k   of parameters. Therefore, ),;( tF  depends on the unknown 1k  

parameters ),(  .  

`Let  mtttt ,,, 21  , with mttt  21  denoting a progressive Type-II censored 

sample from EGC(  , ) and with mRRR ,,, 21   being the progressive censoring scheme. By 

substituting ),;( tF  and ),;( tf , which are given by (1) and (6), respectively, in (12) with 

),(  , the LF based on the progressive Type II censored can be written as: 

      ,);(1);();(exp);();,(
1

1


 
m

i

R

iiii
m itGtGtttL                                          (15) 

where );( itG  is defined in (7). 

Thus, to derive the MLEs of k ,,1   and  , we have to find the partial derivative of the 

logarithm (15) and solve the system of the following nonlinear equations simultaneously with 

respect to k ,,1   and  .  

   01),;();(ln
1




m

i
ii tWtGm




,                                                                                      (16) 

   
,0

);(
1),;(1

);(exp1);(
);(

);(

11
























 















m

i i

i
ii

j

m

i i

i
j

tG
tW

tt
t

t










                       (17) 

where ),;( itW  is in (14) with   unknown. 
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As it seems, the system of nonlinear equations (16) and (17) does not have an analytic 

solution in k ,,1   and  . Therefore, a numerical method is needed to obtain the solution. 

The invariance property of ML estimations can then be applied to obtain the ML estimators for 

)( 0tR  and )( 0th , which are given in (9) and (10), respectively, for some 0t . 

Remarks 

The results obtained for the ML estimation for EGC(  , ) can be applied to other 

specified distributions, for example, 

1- For an EP whose CDF is   )1(1)( ttF ,  tt  1ln);(   and 

  )1(1);( ttG . 

* If 021  mRRR   and nm  , then the ML estimations (16) and (17) coincide with 

those of Shawky and Abu-Zinadah (2009) in the case of a complete sample with  j . 

* If  0121  mRRR   and mnRm  , then the ML estimations (16) and (17) coincide 

with those of Afify (2010) for a Type-II censored sample with rm  ,  j , where );( mtG  

is defined in (7). 

2- For an EW with CDF    ttF  exp1),;( ,  tt );(  and   ttG  exp1);( . 

If  j , then (16) and (17) agree with the result in Kim et al.(2009) for a progressive Type-II 

censored sample. 

 

4. Bayesian Estimation 

In this section, the parameters ,  ,  RF and HRF at time 0t  are estimated based on a 

progressive Type-II  censored sample from the EGC using Bayes methods on the following two 

cases 
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4.1 Case (I):   is unknown and   is known 

Under the assumption that the parameter   is unknown, supposing that the prior 

supposed by the experimenter is the general conjugate prior, which has been suggested by AL-

Hussaini (1999) to be 

 );(exp);();(  DC  ,                                                                                             (18) 

where   is a vector of hyperparameters.  

The posterior density function of   given the data, denoted by )|(* t , after 

substituting with (12) and (18) is then given by 

 
















 



m

i
i

m

i
i

m tAtGDCkt
11

* );()(ln);(exp);()|(   ,                                     (19) 

where    )(1ln);( iii tGRtA  ,                                                                                             (20) 

such that k  is a normalizing constant defined as 

  


dtAtGDCk
m

i
i

m

i
i

m 






















11

1 );()(ln);(exp);( .                                        (21) 

It is important to note that the posterior distribution does not simplify to nice closed 

forms. Therefore, numerical integration methods can be used. 

Bayes estimators of any function of  , say )( , are obtained under two different types of loss 

functions as follows. 

1. Squared error loss function 

Under a SE loss function, the Bayes estimators of )( , denoted by )(ˆ BS , are 

obtained as follows: 
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2. LINEX loss function 
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Under a LINEX loss function, the Bayes estimators of )( , denoted by )(ˆ BL , are obtained as 

follows: 
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Remarks 

Using a non-informative prior, Bayes estimators can be found by substituting   with 0  in (18). 

 

 

4.2 Case (II):   and   are unknown 

Under the assumption that the parameters   and k ,,1   are unknown, suppose 

that   and   are independent so that the prior supposed by the experimenter is given by 

);();(),(   ,  

where   and   are vectors of hyperparameters, );(   is the same general conjugate prior 

given by (18) and );(   is the subjective prior. (Note that k ,,1  , so );(   is a 

vector of subjective priors). Then, the joint prior is 

  ).;();(exp);(),(  DC                                                                                      (22) 

The joint posterior density function of   and   given the data, denoted by )|,(* t , 

is found by substituting (15) and (22) with 
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where );( itG  and ),;( itA  are defined in (7) and (19) with an unknown  , 
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such that k   is a normalizing constant defined as 
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Once again, we see that the posterior distribution does not simplify to nice closed forms. 

Therefore, numerical methods are needed. 

The Bayes estimators of any function of   and j  ( kj ,,1 ), say ),( j , are obtained 

under two different types of loss functions as follows. 

1. Squared error loss function 

Under a SE loss function, the Bayes estimator of ),( j , denoted by ),(ˆ
jBS  , is 

obtained as follows 
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      2.   LINEX loss function 

Under a LINEX loss function, the Bayes estimator of ),( j , denoted by ),(ˆ
jBL  , is 

obtained as follows 
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Remark 

Using a non-informative prior, Bayes estimators can be found by substituting  with 0  in (22). 
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5. Predictions of Times to Failure of Censored Units 

In this section, the problem of predicting times to failure of units censored in multiple 

stages miRsU iRS i
,,2,1,,,2,1;:    in the progressive censored sample mttt ,,, 21   from 

the EGC is considered. The maximum likelihood prediction (MLP) of 
iRSU :  and the predictive 

maximum likelihood estimation (PMLE) of   and   are conducted. Additionally, the Bayesian 

prediction of the unobserved failure times 
iRSU :  and the parameters    and   are studied. Here, 

),,2,1(,: iRs RsU
i

  (defined as U  for short) denotes the ths  order statistic of the iR  

removed units at the stages mi ,,2,1  . 

5.1 Maximum likelihood prediction 

The MLP of times to failure of censored units and the PMLEs of the parameters are 

discussed for the following two cases. 

 

5.1.1 Case (I):   is unknown and   is known 

The predictive likelihood function (PLF) of 
iRSU :  and   is given by (see, for example, 

Basak et al. (2006))  

   
  .,);(1);(

);(1);();();()|;(

:
,11

:
1

:::

iRs

m

skk

R
k

m

k
k

sR
Rs

s
iRsRsRS

tutFtf

uFtFuFuftuL

i

k

i

iiii










                                     (25) 

Then, the PLF of U  and   for the given progressive censored sample mttt ,,, 21   from the 

EGC can be obtained by substituting );(),;(  tFtF   and );(),;(  tftf  , which are 

given by (1) and (6), yielding  
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Then, the predictive likelihood equations for   and u  are given by differentiating the logarithm 

of (26) with respect to   and u , respectively, as follows: 
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where );(... W  is defined in (15), 

    
)()(

1),(
itGuG

suV



             and            
)(1

),(
uG
sRuZ i




 .                                      (29) 

Then, (27) and (28) are solved simultaneously to find the PMLE of  , which is PML̂ . 

Subsequently, by substituting PML̂  in (28), the MLP of u is obtained. 

 

5.1.2 Case (II):   and   are unknown 

After substituting for ),;( tF  and ),;( tf , which are given by (1) and (6), 

respectively, in (26) with ),(  , the PLF of 
iRSU : ,   and   for the given progressive 

censored sample mttt ,,, 21   from the EGC can be written as 
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Then, the predictive likelihood equations for  , u  and j  are given from the 

differentials of the logarithm of (30) with respect to  , u  and j , respectively, as follows:     
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where ),(... G , ),;(... W , ),,( uV  and ),,( uZ  are defined in (7), (14) and (29), 

respectively, with   unknown. Then, (31), (32) and (33) are solved simultaneously to find the 

PMLEs of   and j , which are PML̂  and 
PMLj̂ , respectively. Subsequently, by substituting 

PML̂  and 
PMLj̂  in (32), the MLP of u is obtained. 

 

5.2 Bayesian prediction 

The Bayesian prediction of times to failure of censored units and the Bayesian 

prediction estimates of the parameters are conducted for the following two cases. 

5.2.1 Case (I):   is unknown and   is known 
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By forming the product of the PLF in (26) and the prior in (18), we obtain the joint 

predictive likelihood (see, for example, Madi and Raqab (2009)) to be 
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and );(... A  is defined in (20), 

such that k  is a normalizing constant defined as 
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The Bayes prediction is obtained under two different loss functions as follows: 

1. Squared error loss function 

Under a SE loss function, the Bayes predictions can be obtained as follows: 

 The Bayes prediction of  
iRSU : , denoted by BSÛ , is 
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 The Bayes predictive estimate of  , denoted by BS̂ , is 
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2. LINEX loss function 

Under a LINEX loss function, the Bayes predictions can be obtained as follows: 

 The Bayes prediction of  
iRSU : , denoted by BLÛ , is 
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 The Bayes predictive estimate of  , denoted by BL̂ , is 
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where )(...G , );(... A ,  Q , 1k  are defined in (7), (20), (35) and (36), respectively. 

 

5.2.2 Case (II):   and   are unknown 
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By forming the product of the PLF in (30) and the joint priors of   and   in (22), we obtain the 

joint predictive likelihood to be 

    

     

    
,

);(ln),;();();(ln

);(ln);(ln);(ln)();(
exp

);(1);(
);(

);(exp);(
);()|,,(

111

1

1

0 0

1*














































































m

k
kk

m

k
k

m

k
k

m

k
ki

s

j

sR

l

R

i
m

tGtAtt

tGtGjuGljsD

QtG
uG

uu
Cktu

i
i









 

             (41) 

where Q  and ),;(... A  are defined in (35) and (20), respectively, with   unknown, such that 

k   is a normalizing constant defined as 
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The Bayesian predictions are obtained under two different loss functions as follows: 

1. Squared error loss function 

Under a SE loss function, the Bayes predictions are as follows: 

 The Bayes prediction of  
iRSU : , denoted by BSÛ , is 
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 The Bayes predictive estimate of  , denoted by BS̂ , is 
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 The Bayes predictive estimate of j , denoted by 
BSj̂ , is 
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2. LINEX loss function 

Under a LINEX loss function, the Bayes predictions can be obtained as follows. 

 The Bayes predictive prediction of  
iRSU : , denoted by BLÛ , is 
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(46) 

 The Bayes predictive estimate of  , denoted by BL̂ , is 
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 The Bayes predictive estimate of j , denoted by 
BLj̂ , is 
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where );(... G , ),;(... A ,  Q , and 1k  are defined in (7), (20) with   unknown, (35), and (36).  

 

6. Two-sample prediction 

In this section, a two-sample scheme is used in which the informative sample is a 

progressive Type-II censored sample, and
fNYYY  21 is the order statistics of a future 

sample. It is assumed that the two samples are independent, and each of their corresponding 

random samples is obtained from an EGC population with CDF (6). Therefore, sY  is the ths  

ordered statistic in the future sample of size fN , fNs 1  with lifetimes distributed as (5). 

 6.1 Case (I):   is unknown and   is known 

For the given values of the parameter , the PDF of the fs NsY ,,2,1,    (see, for 

example, Ali Mousa and Jaheen (2002) and Basak et al. (2009)) is given by 
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


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




s
N

ssD f)( .                                                                                                               (50) 

Substituting (6) and (7) in (50) with  , the PDF of fs NsY ,,2,1,  ,  is 
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where jf

j
sN

Q )1(






 
 .                                                                                                       (52) 

The Bayes predictive density of sY  is the product of posterior (19) and the PDF of sY  in (51) 

integrated over   as follows: 
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where )(sD  is defined in (45), 1k  is defined in (21), Q  is defined in (46), );( C  and );( D  

are defined in (18), )( syG , and )( syG  and );( itA  are defined in (7) and (20), respectively. 

It is apparent that )|(* tyh s  cannot be expressed in closed form, and hence, it can be evaluated 

numerically. The Bayesian prediction bounds for sY  can be found through the survival function 

of sY as sv ss dytyhvYP 


 )|()( *  for some positive value of v . Having obtained )|( tvYP s  , a 

%100  Bayesian predictive interval for sY  is then given by    ULYLLP s , where the 

lower limit ( LL ) and upper limit (UL ) of the %100  Bayesian predictive interval for sY  are 

obtained by solving these two equations, 
2

1)|( 
 tLLYP s      and     

2
1)|( 

 tULYP s . 
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6.2 Case (II):   and   are unknown  

Substituting (5) and (7) in (49) with ),(  , we obtain the PDF of fs NsY ,,2,1,   

, as 
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where Q  is defined in (52). 

The Bayes predictive density of sY  is obtained as the product of posterior (23) and the PDF of 

sY  in (48) and integrating the 1k  integral out of   and  k ,,, 21   as follows 
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where )(sD  is defined in (47), 1k  is defined in (24), Q  is defined in (52), );( C  and 

);( D  are defined in (18), );(   is a subjective priors, and );( syG  and ),;( itA  are 

defined in (7) and (20), respectively, with   unknown. 

It is immediate that )|(* tyh s  cannot be expressed in closed form, and hence, it can be 

evaluated numerically.  

The Bayesian prediction bounds for sY  are obtained by evaluating )|( tvYP s   for some 

positive value of v  as follows: sv ss dytyhvYP 


 )|()( * . Having obtained )|( tvYP s  , a 

%100  Bayesian predictive interval for sY  is then given by    ULYLLP s , where LL  
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and UL  of the %100  Bayesian predictive interval for sY  are obtained by solving the two 

equations 

2
1)|( 

 tLLYP s      and     
2

1)|( 
 tULYP s .  

 

 

 

 

 

7. Numerical Examples 

Consider  ttGtG   exp1);();( , an exponential distribution with scale 

parameter . So that 

   ttFtF  exp1),;();( ,                                                                                       (56) 

This implies to, 1k , )(   and tt  );( . 

Estimation of the parameters and Bayes predictions of the lifetime lengths of all 

censored units in progressive sample from the EE could be computed as follows 

For given values of the parameters 2 , 2.0 , 0.96714 )1( R  and 0.06138 )1( h  the 

sample size 30n , the observed sample size 24m  and censoring scheme miRi ,,2,1;  , 

a simulated progressive Type-II censored sample from the EE density given by (50), is 

generated according to the Balakrishnan and Sandhu (1995) algorithm. The sample and the 

corresponding censoring scheme were summarized in Table 1. 

Table 1: Progressively Type-II Censored Sample 
i  it  iR  i  it  iR  
1 0.07453 2 13 5.29994 0 
2 1.31565 0 14 5.33113 0 
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3 1.39383 0 15 5.70934 0 
4 1.53255 0 16 8.42614 0 
5 1.67901 0 17 9.04131 1 
6 2.11215 0 18 9.24132 0 
7 2.19984 0 19 9.54100 0 
8 2.38120 0 20 14.7919 0 
9 2.42607 1 21 19.0596 0 

10 2.65853 0 22 19.0932 0 
11 4.78904 2 23 23.1945 0 
12 5.01500 0 24 25.9794 0 

 
Two cases are considered based on the sample in Table 1, first is only exponent 

parameter   is unknown and two parameters   and   are unknown. 

 

 

7.1 Case (I):   is unknown and   is known 

Assuming that,   has a gamma prior  ba
a

e
a

b 


1

)(
, this implies to 1);(  aC   and 

 bD );( . 

Then, using the data in Table (1), the estimate of  , )( 0tR  and )( 0th  for 10 t  are computed 

from (9) and (10) with 7a  and 2.3b  and with three different LINEX constants as follows: 

 ML estimates are ML̂ 1.51738, )(ˆ
0tRML 0.92508 and )(ˆ

0thML 0.11101. 

 Bayesian estimates under SE are BS̂ 1.61756, )(ˆ
0tRBS 0.92994 and )(ˆ

0thBS  0.10311. 

 Bayesian estimates under LINEX with constant= 2 are 

 
1

ˆ
BL 1.54688 , )(ˆ

01
tRBL 0.92891  and )(ˆ

01
thBL 0.10206. 

 Bayesian estimates under LINEX with constant= 0.001 are 

 
2

ˆ
BL 1.61752, )(ˆ

02
tRBL 0.92994 and )(ˆ

02
thBL 0.10311. 

 Bayesian estimates under LINEX with constant= -0.001 are 
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
3

ˆ
BL 1.61760, )(ˆ

03
tRBL 0.92995 and )(ˆ

03
thBL 0.10311. 

Also, the Bayesian predictions of the lifetime lengths of all censored units in progressive 

sample are computed according to (43) as shown in Table 2. 

Table 2: Bayesian Prediction of Times to Failure of Censored Units  
Based on SE and LINEX loss functions for Case I 

 
LINEX  SE 2 -0.001 0.001 

1:1 RU  5.59673 2.20029 5.60246 5.59103 

1:2 RU  11.6641 4.04986 11.6826 11.6456 

9:1 RU  8.68524 3.88560 8.69986 8.67038 

11:1 RU  8.00331 5.85940 8.00752 7.99912 

11:2 RU 13.5540 7.22102 13.5713 13.5367 

17:1 RU  14.2952 10.2842 14.3080 14.2831 
7.2 Case (II):   and   are unknown  

Suppose that   and   are independent and both having gamma priors )2.3,7(  and 

)5.1,10( , this implies to 1);(  aC  ,  bD );(  and  ba
a

e
a

b 


 1

)(
),( . 

Then, using the data in Table (1), the estimate of  ,  , )( 0tR  and )( 0th  for 10 t  are 

computed from (15), (16) and (22) with three different LINEX constants as follows 

 ML estimates are ML̂ 1.09481, ML̂ 0.12577, )(ˆ
0tRML 0.90348 and )(ˆ

0thML 0.10976. 

 Bayesian estimates under SE are  

BS̂ 1.66132, BS̂ 0.20906, )(ˆ
0tRBS 0.93013 and )(ˆ

0thBS 0.10437. 

 Bayesian estimates under LINEX loss function with constant= 2 are 


1

ˆ
BL 1.5570, 

1
ˆ BL 0.20772, )(ˆ

01
tRBL 0.92908 and )(ˆ

01
thBL 0.10327. 

 Bayesian estimates under LINEX loss function with constant= 0.001 are 


2

ˆ
BL 1.66126, 

2
ˆBL 0.20906, )(ˆ

02
tRBL 0.93013 and )(ˆ

02
thBL 0.10437. 
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 Bayesian estimates under LINEX loss function with constant= -0.001 are 


3

ˆ
BL 1.66138, 

3
ˆBL 0.20906, )(ˆ

03
tRBL 0.93013 and )(ˆ

03
thBL 0.10437. 

Also, the Bayesian predictions of the lifetime lengths of all censored units in progressive 
sample are computed according to (37) shown in Table 3. 
 

Table 3: Bayesian Prediction of Times to Failure of Censored Units 
Based on SE and LINEX loss functions for Case II 

LINEX  SE 2 -0.001 0.001 

1:1 RU  3.82096 1.42312 3.82563 3.81625 

1:2 RU  9.33207 2.86466 9.35040 9.31384 

9:1 RU  8.02786 3.74403 8.04242 8.01340 

11:1 RU  7.50126 5.72874 7.50505 7.49749 

11:2 RU 12.6473 6.95432 12.6650 12.6296 

17:1 RU  14.1078 10.2434 14.1213 14.0944 
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