Inference for Progressive Type-1l Censoring
Statistical Inference for the Exponentiated General Class

Based on Progressive Tyne-ll Censoring

Gannat R. AL-Dayian®; Lamya A. Baharith”; Hadeel S. Klakattawi®
“Department of Statistics, Faculty of Commerce, AL-Azhar University,
Cairo, Egypt

P.0O.Box 11528 10™ Av. Naser City, Cairo. E-mail: galdayian@hotmail.com
bDepartment of Statistics, Faculty of Science, King Abdulaziz University, Jeddah,
Saudi Arabia
P.O.Box 42805 Jeddah 21551 E-mail: Ibaharith@kau.edu.sa
‘Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah,
Saudi Arabia

P.O.Box 42805 Jeddah 21551. E-mail: hklakattawi@kau.edu.sa



If pb LiJ| aacl 1))l deoln —oylail| EliS glinal diolel| dlol]
AT ply —gan

-48 -



A7 pbiy — gawlid] 2acl| 12| desla —ojlnil| LS gliaal daolel] alaol|

Statistical Inference for the Exponentiated General Class
Based on Progressive Type-II Censoring

Gannat R. AL-Dayian*, Lamya A. Baharith**and Hadeel S. Klakattawi**

*Department of Statistics, Faculty of Commerce, AL-Azhar University, Cairo, Egypt
**Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract: An exponentiated general class (EGC) of distributions was considered as the
underlying population of this study. Based on a progressive Type-II censored sample, the
maximum likelihood and Bayesian estimation of the parameters, the reliability and hazard rate
functions of an EGC were studied. Bayesian estimations were conducted under the squared
error and linear-exponential (LINEX) loss functions. The maximum likelihood and Bayes
predictors of the life lengths of all censored units in the progressive sample are discussed. In
addition, the Bayes predictors of future observables were obtained based on the two-sample
prediction. A numerical example is given to illustrate some of the results.

Keywords Exponentiated general class, Progressive Type-1I censored sample; squared error
and LINEX loss functions, Maximum likelihood estimation (prediction); Bayesian estimation

(prediction);, Two-sample prediction.

1. Introduction

Currently, life testing studies are becoming more important in many fields to obtain
information on the time of occurrence for an event of interest. Many distributions are used as
lifetime models. Adding one or more parameters to a distribution function makes the resulting
distribution more flexible for modeling the data. That is, adding a parameter to a cumulative

lifetime distribution function G(#;n7) by exponentiation produces distributions that have a

cumulative distribution function (CDF) of the form F(£;0,n) = [G(t;?l)]g . Such a distribution is
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called an exponentiated model, and if 6 is a positive, this model is also referred to in the
literature as Lehman alternatives, as has been recognized by Gupta et al. (1998).

It 1s interesting to examine families of lifetime distributions with useful properties that
enable them to describe lifetimes of units. This study aimed to discuss a generalized family of
distributions, called the exponentiated general class (EGC). The EGC was suggested based on
the general class that was used by AL-Hussaini (1999) and Soliman (2002) as a lifetime model.

This class has been modified by adding a parameter by exponentiation to its CDF, which
is regarded as an added advantage over the general class. It should be mentioned that the EGC
was proposed by Abdel-Hamid and AL-Hussaini (2009) as the lifetime of a product in a step-
stress model and was considered as an exponentiated distribution. The EGC generalizes many
distributions that are commonly used in life testing and in the analysis of lifetime data. Such
distributions are considered by many authors as ‘generalized’ distributions. The word
exponentiated instead of generalized may lend more clarification, expressiveness and accuracy.
Distributions that can be derived from the EGC include the following: exponentiated
exponential (EE), exponentiated Weibull (EW), Burr X (exponentiated Rayleigh),
exponentiated modified Weibull, exponentiated Pareto (EP), exponentiated gamma, among
others. That is, the results obtained for the EGC could be applied to those lifetime distributions..
In many studies, complete information on the lifetimes of all of the experimental units may not
be available for several reasons.

The progressive Type-II censored sampling is an important and flexible scheme in life-
testing experiments in which the experimenter can remove some units at various stages during

the experiments. This scheme is useful for saving time, effort and cost.
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Estimating the unknown parameters of the distributions is one of the important problems in
statistical studies. In this paper, the maximum likelihood (ML) and Bayesian estimations are
studied.

In addition, the general problem of statistical prediction (inferring the values of
unknown observations or their functions based on the informative samples) has its uses in a
variety of areas. The predictors of times to failures of units censored in multiple stages in a
progressive censored sample are discussed in this paper. Raqab ef al. (2010) studied this type of
prediction. Moreover, Basak and Balakrishnan (2009) considered different predictors based on
the progressive Type-II censored samples from the Pareto and the normal distributions.
Furthermore, Madi and Ragab (2009) studied the Bayesian prediction based on a progressive
sample from an EE distribution.

This paper is concentrated on Bayesian prediction bounds for future order statistics from
an EGC using a two-sample scheme based on a progressive Type-II informative sample. Some
related works can be found in Wu et al. (2006), Ali Mousa and Jaheen (2002) and Jaheen
(2003). The focus of this paper was to estimate the parameters, reliability function (RF) and
hazard rate function (HRF) as well as to predict two different situations based on the
progressive Type-II censored scheme. The estimation and prediction were obtained for two
cases:

(i) The EGC depends on the only unknown exponent parameter.

(i) The EGC depends on a vector of unknown parameters.

The rest of the paper is organized as follows. In Section 2, the EGC and the related model
are discussed. ML estimations are presented in Section 3. In Section 4, Bayesian estimations
under the squared error (SE) and Linear-exponential (LINEX) loss functions are obtained. The

ML and Bayes predictions of the lifetime lengths of all censored units in the progressive sample
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are discussed in Section 5. In Section 6, the Bayes predictors of future observables based on a
two-sample scheme in which the informative sample is progressive Type-II censored and the
future sample is order statistics is studied. When only the exponent parameter is unknown and
in the case of an unknown vector of parameters, two cases are considered in each section.
Finally, a numerical example is given in Section 7 to illustrate the method of estimation and the

Bayes predictions of the lifetime lengths of all of the censored units in the progressive sample.

2. The Exponentiated General Class

If G(#;n7) is a base CDF, then by adding one more parameter (say ) by exponentiation, the

CDF of the exponentiated distribution F(#;0,n) takes one of the following forms:
@ F0.m)=[Gam]  or (1)
() F@:0.m)=1-[1-G@) 2)
where G(;17) is any CDF, and 6 >0 (see Kakade et al. (2008) and Persson and Ryden (2010)).

It is worth noting that, in some studies, the exponentiated model in the form (1) is also known
as a proportional reversed hazard model. However, the exponentiated model form in (2) is
known as a proportional hazard model.

Any CDF for a random variable 7' can be written in the following form:

G(t) =1-exp[- A(1)]. 3)
The probability density function (PDF) corresponding to (3) is

g(n)=2'(nexp[-A()], @

where A(f) = A(1; B) = —In[l - G(¢)] (5)
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P € Q is a vector of parameters, and A(¢) is assumed to be a continuous, monotone increasing,
differentiable function such that A(#) >0 as t > — and A(f) > as t—> o (see Abdel-

Hamid and AL-Hussaini (2009) and AL-Hussaini and Al-Awadhi (2010)).
The EGC could be a special case of form (1) of the exponentiated model with the base CDF as
the general class in (3). Suppose that 7 is a positive random variable denoting the life length of

a component having a CDF in (1) and a PDF as follows:
S0 =0G@mlcEm) ™, 1>0,0>0 (6)
such that G(#;m7) is a base CDF that depends only on 7, and G(#;7) is assumed to be an

absolutely continuous CDF that is defined on the positive half of the real line as follows.

G(tn)=1- exp(— /”L(t;g)) and G'(t;n) =A'(¢;n) exp(— Alt; Q)), (7)

where A(t;7) = —m{l— [F(t;e,g)]é}, (8)

(9,11)6(2, 0>0, n= (n,,nz,...,nk), where n,>0;j =12,...,k, Q is a parameter space and
A(t;n) 1s a non-negative, continuous, monotone increasing and differential function of ¢ such
that A(t;m7) >0 as t —» 0" and A(t;7) > was t —>o.

The corresponding RF and HRF are given by the following, respectively:

R(5:60,m) =1-[G@n)) and (9)

ormexpl-am el

10
1- [G(t;g)r (10)

h(t;0,1) =

3. Maximum Likelihood Estimation

In this section, the parameters 6, 1, RF and HRF at time ¢, are estimated based on the

progressive Type-II censored sample from the EGC by using ML methods for two cases; in the
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first case, 6 is the only unknown parameter, and in the second case all parameters, 6 and n are
unknown.
3.1 Case (1): 0 is unknown and 7 is known

Assuming that G(¢) in (6) depends on known parameters, and then F(¢;0) depends only
on the unknown exponent parameter 6 .
Let g:(t],tz,...,tm), with £ <t, <...<t  denoting a progressive Type-II censored sample
from EGC(0) with R, R,,..., R being the progressive censoring scheme.
The joint PDF of all m progressive Type-II censored order statistics ¢ =(¢,¢,,...,¢,) is the

following:

L@« [[/6:00 - Fa: )] . (1)
i1

where Q is a vector of parameters (see Balakrishnan and Aggarwala (2000)).

By substituting F(#;,0,n) = F(¢;0) and f(¢;0,n) = f(1;0), which are given by (1) and (6),

respectively, with known 7, the likelihood function (LF) based on the progressive Type-II

censored sample from the EGC can be written as:

L@ <o [[ea) Tl i-l6a) " . (12)

i=l1

where G(¢,) and G'(¢,) are defined in (7) with known 1.

To derive the ML estimation of the unknown parameter 6, denoted by éML , we have to solve

the first derivative of the logarithm (12) in 8 as follows:

o G (1:0)-1}=0, (13)
where W(t,;0) = L_g . (14)
[Ga)]* -1
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The Equation (13) is a nonlinear equation and requires the use of a numerical technique.

For a given value of ¢, the ML estimators of RF and HRF can be obtained by the invariance
property of ML estimations by replacing 6 by éML in (9) and (10), respectively, with known 7.
3.2 Case (II): 0 and 1 are unknown

In this case, G(#;17) in (7) is assumed to depend on an unknown k -dimensional vector
n=(,M,,-..,1m,) of parameters. Therefore, F(#;0,7) depends on the unknown Fk+1
parameters (6,7).

“Let g:(t],tz,...,tm), with ¢ <t, <...<t  denoting a progressive Type-II censored
sample from EGC(60,n ) and with R,R,,...,R, being the progressive censoring scheme. By
substituting F(#,6,17) and f(#,6,1), which are given by (1) and (6), respectively, in (12) with
Q=(6,1n), the LF based on the progressive Type II censored can be written as:

L(6,1;1) Hmﬁl’(ti;g) exp(- /l(ti;g))[G(ti;Q)]g_] {1 = [G(tl-; Q)]H}Ri :

i=1

(15)

where G(#;;n) is defined in (7).
Thus, to derive the MLEs of n,,...,n, and 6, we have to find the partial derivative of the

logarithm (15) and solve the system of the following nonlinear equations simultaneously with

respect to n7,,...,7, and 6.

%‘ﬁln[G(ti;Q)]{W(ti;H,g)—1}=0, (16)

a !
n 671 (t;31) ; 9
Z‘ A'(t;n) B Z on /l(ti;g){l - exp(_ ’l(fiﬁl){

i=l1 j

m

7)

= W(ti;Q,Q)]—l:l} o,

G(t;:m)

1

where W (¢,;0,n) is in (14) with  unknown.
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As it seems, the system of nonlinear equations (16) and (17) does not have an analytic

solution in 7,,...,77, and . Therefore, a numerical method is needed to obtain the solution.
The invariance property of ML estimations can then be applied to obtain the ML estimators for
R(t,) and h(z,) , which are given in (9) and (10), respectively, for some ¢, .

Remarks

The results obtained for the ML estimation for EGC(6,n7) can be applied to other
specified distributions, for example,
1- For an EP whose CDF is F(t) =[1-(1+0) 7|, A(t; 8) = BIn(1+¢) and
Gt;B)=1-(1+1)".
*If RR=R,=...=R, =0 and m=n, then the ML estimations (16) and (17) coincide with
those of Shawky and Abu-Zinadah (2009) in the case of a complete sample with n, =4 .
*If RR=R,=...=R,_, =0 and R, =n—m, then the ML estimations (16) and (17) coincide
with those of Afify (2010) for a Type-II censored sample with m=r, n, =a, where G(z,,;1)
is defined in (7).
2- For an EW with CDF F(¢;0,a) = [1 - exp(— t” )]H , Mt;) =t and G(t;x)=1— exp(— t* )
If n, =, then (16) and (17) agree with the result in Kim ez a/.(2009) for a progressive Type-1I

censored sample.

4. Bayesian Estimation
In this section, the parameters@, n, RF and HRF at time ¢, are estimated based on a
progressive Type-II censored sample from the EGC using Bayes methods on the following two

cases
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4.1 Case (I): 0 is unknown and 7 is known

Under the assumption that the parameter € is unknown, supposing that the prior
supposed by the experimenter is the general conjugate prior, which has been suggested by AL-
Hussaini (1999) to be
7(0;8) o< C(0;8) exp(~ D(6;9)), (18)
where ¢ is a vector of hyperparameters.

The posterior density function of @ given the data, denoted by 7 (8]f), after

substituting with (12) and (18) is then given by
7'(0]1) =k0"C(0:9) exp{— {D(e;@ -0 In[G(1)]- ZA(@;B)} , (19)
i=l i=1

where A(1,;0) =R, In{l-|G(t)° ]}, (20)

such that & is a normalizing constant defined as
k=] 0"C(6:9) exp{— {D(e;@ -6 n[G@)]-Y A(tl-;9>}d9. @1
i=l i=l

It is important to note that the posterior distribution does not simplify to nice closed
forms. Therefore, numerical integration methods can be used.

Bayes estimators of any function of 0, say ¢(0), are obtained under two different types of loss

functions as follows.

1. Squared error loss function
Under a SE loss function, the Bayes estimators of ¢(6), denoted by ¢ABS(9), are

obtained as follows:
§15(0) = k[ $(0)6"C(6:5) exp{— {D(e;@ 03 [Ga)]-Y A(ri;e))}de .

2. LINEX loss function
-57-



A7 pbiy — gawlid] 2acl| 12| desla —ojlnil| LS gliaal daolel] alaol|

Under a LINEX loss function, the Bayes estimators of ¢(8), denoted by quL (0), are obtained as

follows:

3, (6) =——In| k[ 0"C(6:5) exp{— {D(e;@—eﬁ ln[G(n-)]—ﬁA(m@HW(@)}d@}.
a 0 i=1 i=1

Remarks

Using a non-informative prior, Bayes estimators can be found by substituting 6 with 0 in (18).

4.2 Case (II): 6 and 1 are unknown
Under the assumption that the parameters 6 and n =n,,...,n, are unknown, suppose
that 6 and 1 are independent so that the prior supposed by the experimenter is given by
7(0,n)=n(0;0)7x(n;7),
where 6 and y are vectors of hyperparameters, 7(0;0) is the same general conjugate prior
given by (18) and 7(7;6) is the subjective prior. (Note that n =mn,,...,n,, so z(n;y) is a
vector of subjective priors). Then, the joint prior is
7(0.1) = C(0:8)exp(- D(0:8) ) (n:7). (22)
The joint posterior density function of 6 and 1 given the data, denoted by ﬂ*(9,7l 1),

is found by substituting (15) and (22) with

D©:8)-03 G- > A+
7 (0,111) = k0" C(0;0)2(n; ) xexp|~| . (@3)
> Meim =3 (4t 0.m ~n[G(:m)

where G(7;;n) and A(¢;0,n) are defined in (7) and (19) with an unknown 7,
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such that £ is a normalizing constant defined as

D©;8)- 03 |Gt m]- S m[ae, )]+
k=], 0" C@:m(my) xexpi~| - - dndo, (24)
) > Atim =X (4t 0.m - n[G(:m)

where J.Q dQ:J:hJ:h...J:h dn, ...dn,dn,.

Once again, we see that the posterior distribution does not simplify to nice closed forms.
Therefore, numerical methods are needed.

The Bayes estimators of any function of 6 and n; (j=1,...,k), say ¢(0,n,), are obtained

under two different types of loss functions as follows.

1. Squared error loss function
Under a SE loss function, the Bayes estimator of ¢(6,7,), denoted by (335(9,77 DR

obtained as follows

A D6:5) - Hiln[G(ti - iln[l’(ti )+
b5 (0.0)) =] | 4(6.1,)6"CO:8)m(m:7)xexpi~| dndo
* D Atz = Y430~ nlG(:m)

2. LINEX loss function
Under a LINEX loss function, the Bayes estimator of ¢(6,7,), denoted by ¢§BL(9,17].), is

obtained as follows
" D6;8)-6% Gt )|~ mlx sm)+
. 1. k| | 0"C6;6)m(m; ) xexp)— = = dnd6
0,n.)=——1In[ Jodn s m m =
I On)= Z/l(fi;g)—Z(A(ti;G,g)—hl[G(fi;g)])w #O.n,)

Remark

Using a non-informative prior, Bayes estimators can be found by substitutingd with 0 in (22).
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5. Predictions of Times to Failure of Censored Units

In this section, the problem of predicting times to failure of units censored in multiple
stages Us;R,.; s=12,...,R,,i=L2,...,m in the progressive censored sample ¢,¢,,...,¢, from
the EGC is considered. The maximum likelihood prediction (MLP) of Uy, and the predictive
maximum likelihood estimation (PMLE) of 6 and n are conducted. Additionally, the Bayesian
prediction of the unobserved failure times Uy, and the parameters ¢ and 7 are studied. Here,
U.. R > (s=12,...,R,) (defined as U for short) denotes the s™ order statistic of the R,

removed units at the stages i =1,2,...,m.

5.1 Maximum likelihood prediction
The MLP of times to failure of censored units and the PMLEs of the parameters are

discussed for the following two cases.

5.1.1 Case (I): 0 is unknown and 7 is known
The predictive likelihood function (PLF) of U, and Q is given by (see, for example,
Basak et al. (2006))
s—1 =S
Lt 321 o f g s OF (1,39~ F ;)| 1= Flat 2 ) x

11/ [[I-Fe:0F . Uy >t

k=k#s

(25)

Then, the PLF of U and 6 for the given progressive censored sample ¢,,¢,,...,¢, from the
EGC can be obtained by substituting F'(#;0,n7) = F(2;0) and f(¢;0,n) = f(¢;0), which are

given by (1) and (6), yielding
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LGe,60:0) o 0™ 2wy exp(- 26 6] ~[6@)f | i-[6w) |
[T7 e 26 TTH-l6eor [ . ust,

k=1,k#i

(26)

Then, the predictive likelithood equations for 6 and u are given by differentiating the logarithm

of (26) with respect to € and u , respectively, as follows:

L nfGal+ GGl [ w.0) - 26e0) ]} 3 nlGe)lor :00-1}- o
(G} m[Ge) .0 -[6e)] W 0)}=0,

A"u) ., exp(— A(u)) o B

T —A'(u ){ —G( [1 9[1+ GV (w,0)- 2@, 9)]]]}— (28)

where W(. ;60) is defined in (15),

V(u,0) = sl and Zu.0)=—R=5 (29)

[Ga) -la@)Y I-[cwl
Then, (27) and (28) are solved simultaneously to find the PMLE of 0, which is éPML.

Subsequently, by substituting éPML in (28), the MLP of u is obtained.

5.1.2 Case (II): 0 and n are unknown

After substituting for F(#,6,n) and f(#,0,n), which are given by (1) and (6),
respectively, in (26) with Q=(0,n), the PLF of U, , 6 and n for the given progressive
censored sample ¢,,¢,,...,¢, from the EGC can be written as

L. 0.0:) = 0™ X wmexpl- A fGem] {eam) ~[6e.m | i-leam] |

xm . mexpl- A6 .l TT-l6e.nl . u=r.

k=1k#i

(30)

-61 -



A7 pbiy — gawlid] 2acl| 12| desla —ojlnil| LS gliaal daolel] alaol|

Then, the predictive likelihood equations for 6, u and 7, are given from the

differentials of the logarithm of (30) with respect to 8, u and 7, respectively, as follows:

" G i+ [Gaan P I @, 0.n) - 2@w.0.m)]- an:th(tk,n){W(tk,Q n-1) o
~le. ) wloe. mlywo.m-[ee.m wesomi=0,
ig: g - l’(u,?l)lil ; %ﬁ;’ﬂ))b o+ GV w.0.n) - Z(u,@,g)]}]zl ~0, (32)
! )+ 2 ()
2, n)a (w11 A’(tk, >a wl
ail(u’ﬂ){HM[l—Q{“[G(M’Q)HV(%QJD—Z(uﬁ”l)]}]}Jf
n; G(u,n) (33)

zi At w1 {M[Q(I_W(tk;gaﬂ))_l]_l}_

k=1 677] G(tkaﬂ)

06 expl- 2002 A0 ¥ w,0.) - (Gt | W(1:0.) =0
on

J
where G(..n), W(.;0,n), V(u,0,n) and Z(u,0,n) are defined in (7), (14) and (29),
respectively, with 7 unknown. Then, (31), (32) and (33) are solved simultaneously to find the

PMLESs of 6 and 7;, which are éPML and 1 iy @ TesPectively. Subsequently, by substituting

0y, and 7, in (32), the MLP of u is obtained.

5.2 Bayesian prediction
The Bayesian prediction of times to failure of censored units and the Bayesian
prediction estimates of the parameters are conducted for the following two cases.

5.2.1 Case (I): 0 is unknown and 7 is known
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By forming the product of the PLF in (26) and the prior in (18), we obtain the joint

predictive likelihood (see, for example, Madi and Ragab (2009)) to be

(.01 = k0™'C(0:5) A'(u)exp(- A(u)) {1 _[ew)f }—Ri y

G(u)
s D(6;5)- 9{@ - j+DIn[G@w)]+ jn[G()]+ ﬁln[G(r»]} - (34)
QCXp _ i k=1 ,
e Y At,:0)
where O = (S HEN S](—DJ” , (35)
Jj [

and A(. ;0) is defined in (20),

such that & is a normalizing constant defined as

s—1 R;=s

2o

Jj=0 1 =0 §

exp{_ {D(e;é)—" [f n[G(z))+ ﬁl“[G(t")ﬂ _ﬁA(t";e)}dQ'

j 0"C(0:5)1-[Gt) | " [i-exp{o(s — j+ )in[G(r,)]}]x

(36)

The Bayes prediction is obtained under two different loss functions as follows:
1. Squared error loss function

Under a SE loss function, the Bayes predictions can be obtained as follows:

e The Bayes prediction of Uy, , denoted by U ss 1

_k J; IgQJ N uomic:6) Mu)eér()p(t; AON [P

oxpl— D(6;9) - 9 (s J+DIn[Gw)]+ jin[Ge, )]+;ln G(tk)]} ;A(tk;Q) b,

(37)
e The Bayes predictive estimate of 8, denoted by QBS, 1
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bu =1 350 [ 0 e MO -law ]

B D(e;@—e{(s—j+l>m[G(u>]+jm[G(ti>]+ﬁln[G(m]}—ﬁA(rk;e)

exp dud@.

(38)
2. LINEX loss function

Under a LINEX loss function, the Bayes predictions can be obtained as follows:

e The Bayes prediction of Uy, , denoted by U s 1S

kZ of [ 0mc:0) 2™ eél(’i; O

Uy =—=In D(6;9) —9{@ — j+DIn[Gw)]+ jIn[G(t,)]+ ﬁln[G(n)]} -
expq— = du do

z A(t,;0) +au
k=1

(39)

e The Bayes predictive estimate of 6, denoted by éBL, is

5 R of, [ “0"1C:9) Aw) eér()b(t; G eI

j=01

©

0, =-—In D(6;6) - 9{@ — j+DIn[Gw)]+ jn[G@)]+ ﬁln[G(rk)]— a}
expy—| = dudO
— > A(t,;0)

(40)

where G(.), A(.;0), O, k™' are defined in (7), (20), (35) and (36), respectively.

5.2.2 Case (II): 0 and n are unknown
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By forming the product of the PLF in (30) and the joint priors of 6 and 71 in (22), we obtain the

joint predictive likelihood to be

(1,0, |0 = kO™ C(0:0) /1'(“;71);’(‘5;(;‘(”;3)) ranh-lew:nl " ]; I:OQX
D(6;5) —9{(s — j+D (GG |+ jm[G( )]+ ilﬂ[G(fk;ﬂ)ﬂ B 4D
CXps — . ’

an:ln[l’(tk;g)h an:l(tk;g) —Zni:(A(tk;Q, ) -[G(,:n)

where Q and A(.;0,n) are defined in (35) and (20), respectively, with  unknown, such that

k 1is a normalizing constant defined as

s—1 R

Zzs i, J],0"c@:o)x0 =[] 1 i-explo(s - j+ DG
D(6;9) - 9{(]’ ln[G(ti ; Q)]+ i‘, ln[G(tk ;71)]} - (42)
X eXpq — . dnde .

Zln[ﬂ'(fk ;71)]"' Zﬂ(fk i) - Z (A(tk ;0,1m) - ln[G(tk ;Q)])

= k=1 =

The Bayesian predictions are obtained under two different loss functions as follows:
1. Squared error loss function

Under a SE loss function, the Bayes predictions are as follows:

e The Bayes prediction of Uy, , denoted by U

BS’

'Y g oy el Aw) AT
-k 220 ][ vorces Glusn) rpfi-6e:m) |
D(0,9) —9{(S —-Jj+ l)ln[G(u;Q)]+ jln[G(tinl)]+ iln[G(tk;ﬂ)ﬂ _ (43)
=P = dudn dé.

m

Zln[”(tk;ﬂ)]"' an:l(tk;g) - an:(A(tk;Q,Q) —ln[G(tk;Q)])

e The Bayes predictive estimate of 8, denoted by 0
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s—1 R.—s

Oy =k

-1
j=0 1=0

i —

~

of,],[, 0mc@:9)

A'(usn) expl= A(us1))

G(u;n) ﬂ(ﬂ;z){l_[G(ti;Q)] } ' x

D(e;@—e{(s—j+l)m[G(u;g>]+jm[G(ti;g>]+ﬁln[G(tk;g)]}

expy —

dudndo.

an“lﬂ[ﬂ’(fkéﬂ)]"‘ anll(tk;g) - an:(A(tk;Q,Q) - ln[G(tk;Q)D

e The Bayes predictive estimate of 77, denoted by 1 Jps 18

s R

ﬁJBS =k

-1
J=0

i
1=

—s

of,],I, me'cess)

Ay exp(-2@usm)
G(u;n)

D(e;@—e{(s—j+l)m[G(u;g>]+jm[G(n;g>]+ﬁln[G(tk;z)

exps —

-
. dudndo.

anlln[m(tk;yl)h an:ﬂ(tk;g)—an:(A(tk;Q,Q)—ln[G(tk;Q)D

2. LINEX loss function

ﬂ(?l;z){l— [G(ti;vl)]g }_Ri X

Under a LINEX loss function, the Bayes predictions can be obtained as follows.

e The Bayes predictive prediction of Uy, , denoted by U a1 18

s=1 Ri—
k2
=0 1=0

expq —

>

G(u;n)

D(Q;Q)—Q{(s — j+D[Gasn)|+ jin[6e;m]+ f_:m[G(tk;g)

ihq[i’(tk;g)hznj:i(tk;?l) —i_‘,(/l(tk;&g) _IH[G(tk;Q)])-'_ au

e The Bayes predictive estimate of 6, denoted by éBL, is
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N N T o et MY O e 4 L
=0 1m0 ~onen G(u;n)
0, = —éln D(e;@—e{(s —j+l)hl[G(u;Q)]Jrjhi[G(fi;?l)]Jfihﬂ[G(fk;’l)]—a} -
expy—| i i . dud6dn
thnMM+ZAm@y234%a@—mkm@$

e The Bayes predictive estimate of 77, denoted by 1 g 18

S So] | [0 con M EDEEA) o)
A Al G(u;n)

A 1 m

fy, == D(6:6) —9{@ ~j+DnlGan]+ jmlGam]+ Zhl[G(rk;mﬂ -
exps — =

an:hl[i’(tk;g)h ii(tk;g) - i(A(tk;Qﬁl) - ln[G(fk;Q)])"' atn,

(47)

dudnd6

(48)

where G(. ;n7), A(.;60,m7), Q,and k™" are defined in (7), (20) with 7 unknown, (35), and (36).

6. Two-sample prediction

In this section, a two-sample scheme is used in which the informative sample is a

progressive Type-II censored sample, and?, <Y, S ST is the order statistics of a

future

sample. It is assumed that the two samples are independent, and each of their corresponding

random samples is obtained from an EGC population with CDF (6). Therefore, Y, is the s”

ordered statistic in the future sample of size N,, 1 <s < N, with lifetimes distributed as (5).

6.1 Case (I): 0 is unknown and 7 is known

For the given values of the parameterQ, the PDF of the Y, s=12,...,N ; (see, for

example, Ali Mousa and Jaheen (2002) and Basak et al. (2009)) is given by
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h(y, | Q) =D(s)[1 - Fr (v, | [F (v, | £, |, (49)
)
where, D(s) =5 . (50)
R)

Substituting (6) and (7) in (50) with Q=60 ,the PDFof ¥, s =12,...,N, is

h(y, |6) = D(s)6 - O );z‘p(f‘ 0)) ZQexp{e(s + H[Go)], (51)
(Nf - s] .
where Q = ' (=D’ (52)
J

The Bayes predictive density of Y, is the product of posterior (19) and the PDF of Y in (51)

integrated over 6 as follows:

W (v, 1) =D(s)k

A'(y,)exp(A(1,))
g ) 0" C(0;5) x
. ;gj 6;5)

D(e;@—e{(s+j)m[G(ys>]+ﬁm[G(m]}—ﬁA(ri;e) "

i=l

(53)

exps —

2

where D(s) is defined in (45), k' is defined in (21), Q is defined in (46), C(0;8) and D(0;8)
are defined in (18), G(y,), and G'(y,) and A(z,;;0) are defined in (7) and (20), respectively.
It is apparent that /" (y, |¢) cannot be expressed in closed form, and hence, it can be evaluated

numerically. The Bayesian prediction bounds for Y, can be found through the survival function
of Yas P(Y, 2v) = J.wh*(ys |t)dy, for some positive value ofv. Having obtained P(Y, 2 v|?), a

1007 % Bayesian predictive interval for Y, is then given by P[LL<Y, <UL]=7, where the
lower limit (LL ) and upper limit (UL ) of the 1007 % Bayesian predictive interval for Y, are

T and  P(Y >UL|t)—1T

. . . 1
obtained by solving these two equations, P(Y, > LL |t) =
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6.2 Case (II): 0 and 1 are unknown

Substituting (5) and (7) in (49) with Q =(0,77), we obtain the PDF of ¥, s=1,2,...,N,
, as
A'(ysmexplA(y,;n) ) & .
h(y,10,7) = D(s) 02 2.:m) > 0expl(j +9)[G(y,;m)], (54)

G(ysn) =
where Q is defined in (52).
The Bayes predictive density of Y, is obtained as the product of posterior (23) and the PDF of

Y, in (48) and integrating the & +1 integral out of 6 and n = (17, My ,nk) as follows

* Ny-s ] ' . y) ¥
K0, 10=D0k 30[ [ 070 7 chfypi )<y m)
D(Q@‘Q{(S+J'>1“[G(ysé’1)]+iln[G(n;Q)]}— (55)
al - dnde

m

> A+ iﬂ(w) - ﬁ(/l(n-;@ﬂl) ~n[G(t;:m))

i=1
where D(s) is defined in (47), k™' is defined in (24), O is defined in (52), C(0;8) and
D(0;9) are defined in (18), 7(n7;y) is a subjective priors, and G(y.;n) and A(¢;60,n) are
defined in (7) and (20), respectively, with n unknown.

It is immediate that A"(y,|t) cannot be expressed in closed form, and hence, it can be
evaluated numerically.

The Bayesian prediction bounds for Y, are obtained by evaluating P(Y, > v|¢) for some
positive value of v as follows: P(Y, >2v)= J. wh*(ys |t)dy,. Having obtained P(Y, >v|?), a

1007 % Bayesian predictive interval for ¥, is then given by P[LL <Y, <UL]|=17, where LL
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and UL of the 1007 % Bayesian predictive interval for Y are obtained by solving the two

equations

1+7

P(Y, 2 LL|1)= and P(YSZULIE)ZI_TT.

7. Numerical Examples

Consider G(t;n) =G(0)=1- exp(— Ut), an exponential distribution with scale
parameter o . So that
F(tn) = F(5;6,0) =1 —exp(- at)]’, (56)
This implies to, k =1, n = (o) and A(t;0)=ot.

Estimation of the parameters and Bayes predictions of the lifetime lengths of all

censored units in progressive sample from the EE could be computed as follows

For given values of the parameters 0 =2, 0 =02, R(1)=0.96714 and A(l)=0.06138 the
sample size n =30, the observed sample size m =24 and censoring scheme R,;i=12,...,m,

a simulated progressive Type-Il censored sample from the EE density given by (50), is
generated according to the Balakrishnan and Sandhu (1995) algorithm. The sample and the

corresponding censoring scheme were summarized in Table 1.

Table 1: Progressively Type-1I Censored Sample
i t, R, i t, R,
1 0.07453 2 13 5.29994 0
2 1.31565 0 14 5.33113 0
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3 1.39383 0 15 5.70934 0
4 1.53255 0 16 8.42614 0
5 1.67901 0 17 9.04131 1
6 2.11215 0 18 9.24132 0
7 2.19984 0 19 9.54100 0
8 2.38120 0 20 14.7919 0
9 2.42607 1 21 19.0596 0
10 2.65853 0 22 19.0932 0
11 4.78904 2 23 23.1945 0
12 5.01500 0 24 25.9794 0

Two cases are considered based on the sample in Table

parameter € 1s unknown and two parameters € and o are unknown.

7.1 Case (I): 0 is unknown and 7 is known

a

1, first is only exponent

Assuming that, # has a gamma priorrb—B”“e"’g, this implies to C(6;8)=0“" and

D(0;8)=b0.

()

Then, using the data in Table (1), the estimate of 8, R(¢,) and A(t,) for ¢, =1 are computed

from (9) and (10) with a =7 and b =3.2 and with three different LINEX constants as follows:

e ML estimates are éML =1.51738, IéML (¢,) =0.92508 and ﬁML (t,)=0.11101.

e Bayesian estimates under SE are éBS =1.61756, R,(t,) =0.92994 and ﬁBS (z,) = 0.10311.

e Bayesian estimates under LINEX with constant= 2 are

0, =1.54688 , Ry, (t,)=0.92891 and hy, (t,) =0.10206.

e Bayesian estimates under LINEX with constant=0.001 are

0, =1.61752, Ry, (t,)=0.92994 and &y, (t,) =0.10311.

e Bayesian estimates under LINEX with constant=-0.001 are
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0, =1.61760, Ry, (t,)=0.92995 and hy, (1,)=0.10311.

Also, the Bayesian predictions of the lifetime lengths of all censored units in progressive

sample are computed according to (43) as shown in Table 2.

Table 2: Bayesian Prediction of Times to Failure of Censored Units

Based on SE and LINEX loss functions for Case 1

SE 2 ﬁ)n(\)l(])zlx 0.001
Uig, 5.59673 2.20029 5.60246 5.59103
Uyr 11.6641 4.04986 11.6826 11.6456
Ui, 8.68524 3.88560 8.69986 8.67038
Uz, 8.00331 5.85940 8.00752 7.99912
Uiz, 13.5540 7.22102 13.5713 13.5367
Ui, 14.2952 10.2842 14.3080 14.2831

7.2 Case (II): 0 and 1 are unknown

Suppose that & and o are independent and both having gamma priors ¢ =(7,3.2) and
y =(10,1.5), this implies to C(6;9) = 0", D(9;5)=h0 and n(o,y)=

Then, using the data i Table (1), the estimate of 6, o, R(f)) and A(¢,) for #,=1 are
computed from (15), (16) and (22) with three different LINEX constants as follows
e ML estimates are éML =1.09481, 6,, =0.12577, IéML(tO) =0.90348 and szL(to) =0.10976.

e Bayesian estimates under SE are

b” 90—] e—b@ )
I'(a)

0, =1.66132, 6, =0.20906, R, (£,)=0.93013 and 4 (t,) =0.10437.

e Bayesian estimates under LINEX loss function with constant= 2 are

0y, =1.5570, &, =0.20772, Ry, (t,) =0.92908 and hy, (t,) =0.10327.

e Bayesian estimates under LINEX loss function with constant= 0.001 are

0y, =1.66126, 6, =0.20906, Ry, (t,)=0.93013 and Jy, (1,)=0.10437.
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e Bayesian estimates under LINEX loss function with constant=-0.001 are
0, =1.66138, &,, =0.20906, Ry, (¢,)=0.93013 and /i, (1,)=0.10437.

Also, the Bayesian predictions of the lifetime lengths of all censored units in progressive
sample are computed according to (37) shown in Table 3.

Table 3: Bayesian Prediction of Times to Failure of Censored Units
Based on SE and LINEX loss functions for Case I1

SE 2 Pol.l(\)l(])zlx 0.001
Upr, 3.82096 1.42312 3.82563 3.81625
Usi 9.33207 2.86466 9.35040 9.31384
Ui, 8.02786 3.74403 8.04242 8.01340
Uir, 7.50126 5.72874 7.50505 7.49749
Us, 12.6473 6.95432 12.6650 12.6296
Upg, 14.1078 10.2434 14.1213 14.0944
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