Estimating and Prediction for Alpha-Power Pareto distribution Based on Progressive Type-II Censoring Scheme

نوع المستند : المقالة الأصلية

المؤلف

Statistics Department, Faculty of Commerce, AL-Azhar University (Girls’Branch), Cairo, Egypt

المستخلص

In Statistical theory, inclusion of an additional parameter to standard distributions is a usual practice. Mahdavi and Kundu (2017) presented a method, called alpha power transformation, for including an extra parameter in continuous distribution. Basically, the idea was introduced to incorporate skewness to the baseline distribution. In this paper, the parameters of the alpha-power Pareto distribution, reliability and hazard rate functionsare estimated under progressive censoring Type-II scheme with random removal. The model parameters are estimated using the maximum likelihood estimation method. Further, the asymptotic confidence intervals for the model parameters are discussed. Maximum likelihood prediction (point and bounds) is considered for future order statistics under progressive Type-II censored informative samples. Numerical study is given and some interesting comparisons are presented to illustrate the theoretical results. Moreover, the results are applied to real data sets.

الكلمات الرئيسية


Almetwally, E. M. and Almongy, H. M. (2018). Bayesian estimation of the generalized power Weibull distribution parameters based on progressive censoring schemes. International Journal of Mathematical Archive. 9, 1-8.
Almetwally, E. M., Mubarak, A. E. and Almongy, H. M. (2018). Bayesian and maximum likelihood estimation for the Weibull generalized exponential distribution parameters using progressive censoring schemes.   Pakistan Journal of Statistics and Operation Research. 14, 853-868. Doi: 10.18187/pjsor.v14i4.2600.
Alshenawy, R. (2020). A new one parameter distribution: Properties and estimation with applications to complete and type II censored data. Journal Taibah Univ. Sci., 14, 11–18.
Ateya, S., F. and Mohammed, H., S.  (2018). Prediction under Burr-XII distribution based on generalized Type-II progressive hybrid censoring. Journal of the Egyptian Mathematical Society; 26, 491-508.
Balakrishnan, N. (2007) Progressive censoring methodology: An appraisal. Test; 16, 211–259.
Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods and Applications. Boston, Birkhauser.
Balakrishnan, N. and Cramer, E. (2014). The Art of Progressive Censoring: Applications to Reliability and Quality. Boston, Birkhauser; Doi: 10.1007/978-0-8176-4807-7.
Balakrishnan, N. and Sandhu, R. A. (1995). A simple simulational algorithm for generating progressive Type-II censored samples. The American Statistician; 49, 2. 229-230.
Castillo, E. and Hadi A. S. (1997) Fitting the generalized Pareto distribution to data. Journal of the American Statistical Association; 92, 440, 1609–20.
Farshchian M, Posner F L. The Pareto distribution for low grazing angle and high resolution X-band sea clutter. Naval Research Lab WashingtonDC; 2010. Alpha-Power Pareto distribution PLOS.
Hogg R. and Klugman S.A. (1984).   Loss Distributions. New York: Wiley.
Ihtisham S, Khalil A., Manzoor S. and Khan, S. A. and Ali, A. (2019) Alpha-Power Pareto distribution: Its properties and applications. PLOS ONE; 14, 6, 0218027. https://doi.org/10.1371/journal. pone.0218027.
Kaminsky, K., S. and Rhodin, L, S. (1985). Maximum likelihood prediction. Annals of the Institute of Statistical Mathematics; 37, 507-517.
Karakoca, A. and Pekgör, A. (2019). Maximum likelihood estimation of the parameters of progressively Type-II censored samples from Weibull distribution using Genetic Algorithm. Academic Platform Journal of Engineering and Science; 7. Doi: 10.21541/apjes.452564.
Levy, M. and Levy H. (2003) Investment talent and the Pareto wealth distribution: Theoretical and experimental analysis. Review of Economics and Statistics; 85, 3, 709–25.
Mahdavi, A. and Kundu, D. (2017) A new method for generating distributions with an application to exponential distribution. Communications in Statistics-Theory and Methods; 46, 13, 6543–57.
Philbrick, S. W. (1985). A practical guide to the single parameter Pareto distribution. PCAS LXXII; 44–85.
Raqab, M. Z., Alkhalfan, L. A., Bdair, O. M. and Balakrishnan, N. (2019). Maximum likelihood prediction of records from 3-parameter Weibull distribution and some approximations.  Journal of Computational and Applied Mathematics, 356, 118-132