Almetwally, E. M. and Almongy, H. M. (2018). Bayesian estimation of the generalized power Weibull distribution parameters based on progressive censoring schemes. International Journal of Mathematical Archive. 9, 1-8.
Almetwally, E. M., Mubarak, A. E. and Almongy, H. M. (2018). Bayesian and maximum likelihood estimation for the Weibull generalized exponential distribution parameters using progressive censoring schemes. Pakistan Journal of Statistics and Operation Research. 14, 853-868. Doi: 10.18187/pjsor.v14i4.2600.
Alshenawy, R. (2020). A new one parameter distribution: Properties and estimation with applications to complete and type II censored data. Journal Taibah Univ. Sci., 14, 11–18.
Ateya, S., F. and Mohammed, H., S. (2018). Prediction under Burr-XII distribution based on generalized Type-II progressive hybrid censoring. Journal of the Egyptian Mathematical Society; 26, 491-508.
Balakrishnan, N. (2007) Progressive censoring methodology: An appraisal. Test; 16, 211–259.
Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods and Applications. Boston, Birkhauser.
Balakrishnan, N. and Cramer, E. (2014). The Art of Progressive Censoring: Applications to Reliability and Quality. Boston, Birkhauser; Doi: 10.1007/978-0-8176-4807-7.
Balakrishnan, N. and Sandhu, R. A. (1995). A simple simulational algorithm for generating progressive Type-II censored samples. The American Statistician; 49, 2. 229-230.
Castillo, E. and Hadi A. S. (1997) Fitting the generalized Pareto distribution to data. Journal of the American Statistical Association; 92, 440, 1609–20.
Farshchian M, Posner F L. The Pareto distribution for low grazing angle and high resolution X-band sea clutter. Naval Research Lab WashingtonDC; 2010. Alpha-Power Pareto distribution PLOS.
Hogg R. and Klugman S.A. (1984). Loss Distributions. New York: Wiley.
Kaminsky, K., S. and Rhodin, L, S. (1985). Maximum likelihood prediction. Annals of the Institute of Statistical Mathematics; 37, 507-517.
Karakoca, A. and Pekgör, A. (2019). Maximum likelihood estimation of the parameters of progressively Type-II censored samples from Weibull distribution using Genetic Algorithm. Academic Platform Journal of Engineering and Science; 7. Doi: 10.21541/apjes.452564.
Levy, M. and Levy H. (2003) Investment talent and the Pareto wealth distribution: Theoretical and experimental analysis. Review of Economics and Statistics; 85, 3, 709–25.
Mahdavi, A. and Kundu, D. (2017) A new method for generating distributions with an application to exponential distribution. Communications in Statistics-Theory and Methods; 46, 13, 6543–57.
Philbrick, S. W. (1985). A practical guide to the single parameter Pareto distribution. PCAS LXXII; 44–85.
Raqab, M. Z., Alkhalfan, L. A., Bdair, O. M. and Balakrishnan, N. (2019). Maximum likelihood prediction of records from 3-parameter Weibull distribution and some approximations. Journal of Computational and Applied Mathematics, 356, 118-132