[1] Aljarrah, M. A., Lee, C. and Famoye, F. (2014). On generating T-X family of distributions using quantile functions. Journal of Statistical Distributions and Applications 1 (1), pp. 1–17.
[2] Alzaatreh, A, Lee, C. and Famoye, F. (2013b). A new method for generating families of continuous distributions. Metron 71(1), pp. 63–79.
[3] Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Stat. 12, pp. 171–178.
[4] Bradley, D. M. and R.C. Gupta, R. C. (2003). Limiting behaviour of the mean residual life, Annals of the Institute of Statistical Mathematics 55 (l), pp. 217-226.
[5] Bryson, C. and Siddiqui, M. M. (1969). Some criteria for aging, Journal of the American Statistical Associatzon 64, pp. 1472-1483.
[6] Burr, I. W. (1942). Cumulative frequency functions. Ann. Math. Stat. 13, pp. 215–232.
[7] Cordeiro, G.M., De Castro, M. (2011). A new family of generalized distributions. J. Stat. Comput. Simul. 81(7), pp. 883–898.
[8] Eugene, N., Lee, C., Famoye, F. (2002). The beta-normal distribution and its applications. Commun. Stat. Theory Methods 31(4), pp. 497–512.
[9] Fry, T.R.L. (1993). Univariate and multivariate Burr distributions: a survey. Pak. J. Stat. Ser. A 9, pp. 1–24.
[10] Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika 36, pp. 149–176.
[11] Johnson, N. L., Kotz, S., Balakrishnan, N. (1994). Continuous Univariate Distributions, vol. 1, 2nd edn. Wiley, New York.
[12] Jones, M. C. (2009). Kumaraswamys distribution: a beta-type distribution with tractability advantages. Stat. Methodol. 6, pp. 70–81.
[13] Kao, J. H. K. (1958). Computer methods for estimating Weibull parameters in reliability studies, Trans. IRE Reliab. Qual. Control 13, pp. 15–22.
[14] Kao, J. H. K. (1959) A graphical estimation of mixed Weibull parameters in life testing electron tube, Technometrics 1, pp. 389–407.
[15] Kenney, J. F. and E. S. Keeping, E. S. (1962). Mathematics of statistics. 3rd ed. Princeton, NJ: Chapman and Hall, pp. 101-102.
[16] Kotz, S, Vicari, D. (2005). Survey of developments in the theory of continuous skewed distributions. Metron LXIII, pp. 225–261.
[17] Kreitmeier, W. and Linder, T. (2011). High-resolution scalar quantization with Renyi entropy constraint, IEEE Trans. Inform. Theory 57, pp. 6837-6859.
[18] Kumaraswamy, P. (1980). A generalized probability density functions for double-bounded random processes. J. Hydrol. 46, pp. 79–88.
[19] Lai, C. D. (2013). Constructions and applications of lifetime distributions. Appl Stoch Model Bus Ind 29, pp. 127–140.
[20] Marshall, A. W. and Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families: Biometrika 84, pp. 641-652.
[21] Marshall, A. W. and Olkin, I. (2010). Life Distributions. Springer, New York.
[22] Moors, J. J. (1988). A quantile alternative for kurtosis. J. Royal Statist. Soc. D, vol. 37, pp. 25-32.
[23] Muth, E. J. (1977). Reliability models with positive memory derived from the mean residual life function, In Theory and Applications of Reliability, (Edited by C.P. Tsokos and I.N. Shimi), pp. 401-434, Academic Press.
[24] Nadarajah, S., Kotz, S. (2004). The beta Gumbel distribution. Math. Probl. Eng. 4, pp. 323–332.
[25] Nadarajah, S., Kotz, S. (2005). The beta exponential distribution. Reliab. Eng. Syst. Saf. 91(6), pp. 689–697.
[26] Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philos. Trans. Royal Soc. Lond. A 186, pp. 343–414.
[27] Popescu, T. D. and Aiordachioaie, D. (2013). Signal segmentation in time-frequency plane using Renyi entropy-application in seismic signal processing, in: 2013 Conference on Control and Fault-Tolerant Systems (SysTol), October 9-11, Nice, France.
[28] Renyi, A. (1961). On measures of entropy and information, in: Proc. Fourth Berkeley Symp. Math. Statist. Probab., vol. 1, University of California Press. Berkeley, pp. 547-561.
[29] Song, K. S. (2001). Rényi information, loglikelihood and an intrinsic distribution measure. em J Stat Plan Infer 93: pp. 51-69.